Appendix C: MCES Stream Monitoring and Assessment Stream Water Quality Analyses



| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (a) A set of the se             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and a set of the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| . '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (a) A second difference of the difference of the second s<br>second second s<br>second second se<br>Second second se<br>Second second sec |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | والموجود بالمحاجب المتحاج والمحاج والم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Construction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (a) A set of the se             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1) A second s<br>second second sec<br>second second s<br>second second s<br>second second se   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | والمتعاط والمتعود بأراب ويراد والمتعاوي والمعادي والمتعاوي والمتعاوي والمتعاوي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (a) A set of the se             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sale of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (a) A set of the se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an an an an an Arthread and Arthread a<br>Arthread an Arthread an Arthread an Arthread an Arthread an Arthread an Arthread and Arthread and Arthread and A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n an an an an Arran ann an Arran an Arran an Arran ann an<br>1997 an Arran an Arr<br>1997 an Arran an Arra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1) And the first of the first of the state of the sta             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# **2004 Stream Monitoring and Assessment Report**

Metropolitan Council Mears Park Centre 230 East Fifth Street Saint Paul, Minnesota 55101 Telephone: 651-602-1000

November 2005

Publication No. 32-05-071

#### **Metropolitan Council Members**

| Peter Bell           | Chair       |
|----------------------|-------------|
| Roger Scherer        | District 1  |
| Tony Pistilli        | District 2  |
| Mary Hill Smith      | District 3  |
| Julius C. Smith      | District 4  |
| Russ Susag           | District 5  |
| Peggy Leppik         | District 6  |
| Annette Meeks        | District 7  |
| Lynette Wittsack     | District 8  |
| Natalie Haas Steffen | District 9  |
| Kris Sanda           | District 10 |
| Georgeanne Hilker    | District 11 |
| Chris Georgacas      | District 12 |
| Rick Aguilar         | District 13 |
| Song Lo Fawcett      | District 14 |
| Daniel Wolter        | District 15 |
| Brian McDaniel       | District 16 |

| General Phone   | 651-602-1000                 |
|-----------------|------------------------------|
| Data Center     | 651-602-1140                 |
| TTY             | 651-291-0904                 |
| Metro Info Line | 651-602-1888                 |
| E-mail          | data.center@metc.state.mn.us |
| Web site        | www.metrocouncil.org         |

Printed on recycled paper with at least 20% post-consumer waste.

On request, this publication will be made available in alternative formats to people with disabilities. Call the Metropolitan Council Data Center at 651 602-1140 or TTY 651-291-0904.

# **EXECUTIVE SUMMARY**

The Metropolitan Council has conducted environmental monitoring of stream water quantity and quality since 1989. The Metropolitan Council and its partners currently operate monitoring stations on 25 streams in the seven-county metropolitan area.

This report presents the assessment of 2004 and historical water quality and water quantity dynamics for 27 sites on 25 Metropolitan Area streams. The Metropolitan Council and monitoring partners collected the data used in this report with the exception of Elm and Rice Creeks, which were monitored by the United States Geological Survey and the Rice Creek Watershed District, respectively. The streams assessed in this report and the respective main stem rivers into which they discharge are listed below:

Mississippi River: Bassett Creek, Battle Creek, Cannon River, Crow River, Elm Creek, Fish Creek, Minnehaha Creek, Rum River, Rice Creek, and Vermillion River

Minnesota River: Bevens Creek, Bluff Creek, Carver Creek, Credit River, Eagle Creek, Nine Mile Creek, Riley Creek, Sand Creek, Scott County Ditch 10, West Raven Stream, and Willow Creek

St. Croix River: Browns Creek, Carnelian-Marine Outlet, Silver Creek and Valley Creek

Water quantity and quality variables assessed in this report are stream flow rate and volume, total suspended solids, total phosphorus, total dissolved phosphorus, total Kjeldahl nitrogen, and nitrate nitrogen (nitrate).

#### 2004 and historical pollutant loads and streamflow:

For most of the Metropolitan Area, 2004 was a year of near to slightly below normal precipitation. Bassett Creek, Battle Creek, Bluff Creek, Browns Creek, Carnelian Marine Outlet, Carver Creek, Fish Creek, Minnehaha Creek, Nine Mile Creek, Riley Creek, Silver Creek and Valley Creek had precipitation deficits ranging from -11% to -14%. Therefore the flow in these streams was less than expected during a typical year.

The Mississippi River tributaries had moderate flow-weighted mean concentrations of total phosphorus, total suspended solids, and nitrate with the exception of total phosphorus and nitrate concentrations discharged by the Cannon River, Crow River, South Fork Crow River, and the Vermillion River which had high flow weighted mean concentrations. In particular, the Vermillion River had comparatively high nutrient (total phosphorus and nitrate) concentrations for both 2004 and for the historical annual average. The effluent discharged into the Vermillion from the Empire Wastewater Treatment Plant in Empire Township is a significant source of the river's nutrient load.

The Minnesota River tributaries varied in flow-weighted mean concentrations of nutrients and total suspended solids. Sand Creek, Bevens Creek – Upper and Lower,

and West Raven Creek had comparatively high concentrations of total phosphorus, total suspended solids, and nitrate. Bluff Creek and Riley Creek had high concentrations of total phosphorus and total suspended solids. Scott County Ditch 10 had high concentrations of total phosphorus and nitrate. Nine Mile Creek, Eagle Creek, Willow Creek, and Credit River discharged comparatively low concentrations of total phosphorus, total suspended solids, and nitrate to the Minnesota River. Due to road and bridge construction at the site, Carver Creek did not have any flow data for 2004.

The St. Croix River tributaries had comparatively low flow-weighted mean concentrations for total phosphorus, nitrate and total suspended solids. Of note is the flow-weighted mean nitrate concentration at Valley Creek, which is five times greater than the next highest nitrate concentrations in Browns Creek. Studies conducted by researchers at the Science Museum of Minnesota's St. Croix Watershed Research Station have shown that discharge of nitrate-contaminated groundwater via springs is the primary source of the high nitrate concentrations in Valley Creek.

#### **Trend Analysis:**

Trend analysis (examination of stream data for changes over time) was performed on flow-weighted mean concentrations of the 25 streams. The analysis did identify some changes in water quality and quantity over time.

Of note, however, is Nine Mile Creek, a tributary of the Minnesota River. Trend analysis indicated an improvement in water quality and decreases in pollutant loads since 1993, when the Nine Mile Creek Watershed District completed the Lower Valley Project. This project stabilized scarps and restored streambed stability in the Nine Mile Creek segment just south of Old Shakopee Road to just upstream of the stream outlet to the Minnesota River. The segment where the water quality trends were detected is located just upstream of the monitoring station.

# **ACKNOWLEDGEMENTS**

This report was prepared by Judy Sventek (Environmental Planning Analyst; phone: 651-602-1156) and Steve Kloiber (Environmental Planning Analyst; phone: 651-602-1056) both of the Metropolitan Council's Environmental Services Division Environmental Quality Assurance Department. Questions about the content of this report can be referred directly to them.

Data were collected and verified by environmental monitoring staff in the Metropolitan Council's Environmental Services Division Environmental Quality Assurance Department. Special thanks go to Tim Pattock, Mike Ahlf, Cassandra Champion, Leigh Harrod, Karen Jensen, Hong Wang, Kent Johnson and Marcel Jouseau.

Metropolitan Council staff wishes to thank our local partners who have been working with Metropolitan Council staff to operate and maintain stream monitoring stations throughout the Metropolitan Area. Special thanks go to Anoka County Soil and Water Conservation District, Bassett Creek Watershed Management Commission, Black Dog Watershed Management Organization, Carver County Environmental Services, Carnelian-Marine Watershed District, Dakota County Soil and Water Conservation District, Elm Creek Watershed Management Organization, Lower Minnesota River Watershed District, Minneapolis Park and Recreation Board, Ramsey-Washington-Metro Watershed District, Rice Creek Watershed District, Riley-Purgatory-Bluff Creek Watershed District, Scott County Soil and Water Conservation District, St. Croix Watershed Research Station, United States Geological Survey, Valley Branch Watershed District, Washington County Soil and Water Conservation District and Wright County SWCD.

Finally Metropolitan Council staff wishes to thank the Minnesota Legislature and the Minnesota Pollution Control Agency for providing funding for several of the stations discussed in this report.

# TABLE OF CONTENTS

| Executive Summary                                         | i   |
|-----------------------------------------------------------|-----|
| Acknowledgements                                          | iii |
| Table of Contents                                         | iv  |
| Introduction                                              | . 1 |
| Growth Trends and Challenges for Surface Water Protection | . 1 |
| Metropolitan Council Water Resource Programs              | . 1 |
| Metropolitan Council Stream Monitoring Program            | . 2 |
| Monitoring Sites and Watershed Characteristics            | . 2 |
| Methods                                                   | . 5 |
| Monitoring Methods                                        | . 5 |
| Data Assessment Methods                                   | . 6 |
| Results                                                   | . 7 |
| 2004 Climate                                              | . 7 |
| 2004 Stream Flow                                          | . 9 |
| Water Chemistry Data                                      | .9  |
| Macroinvertebrate Data                                    | 10  |
| Impaired Waters                                           | 10  |
| Discussion                                                | 16  |
| 2004 and Historical Average Stream Data Comparisons       | 16  |
| Trend Analysis                                            | 25  |
| Conclusions                                               | 26  |
| Recommendations                                           | 27  |
| References                                                | 28  |
| Appendix A: Hydrographs                                   | 30  |
| Appendix B: Summary of 2004 Monitoring Data               | 58  |
| Appendix C: 2004 Macroinvertebrate Data                   |     |
| Appendix D: Summary of FLUX Calculations and Results      | 88  |

# Tables

| Table 1. Metropolitan Council Stream Monitoring Sites and Partners             | . 2 |
|--------------------------------------------------------------------------------|-----|
| Table 2. Stream Monitoring Sites                                               | . 4 |
| Table 3. Meteorological Stations and Annual Precipitation Data for Each Stream | 11  |
| Table 4. 2004 Macroinvertebrate Metrics                                        | 12  |
| Table 5. Hilsenhoff Biotic Index*                                              | 13  |
| Table 6. MPCA 2004 303(d) Impaired Waters List                                 |     |
| Table 7. Results of Kendall Tau Trend Analysis                                 | 25  |

# Figures

| Figure 1. Metropolitan Council Stream Monitoring Sites                             | 3 |
|------------------------------------------------------------------------------------|---|
| Figure 2. 2004 and Normal Monthly Precipitation at Minneapolis-St. Paul Airport    | 8 |
| Figure 3. 2004 and Normal Monthly Air Temperatures at Minneapolis-St. Paul Airport | 8 |
| Figure 4. Stream Comparison: 2004 and Historic Mean Flow-Weighted Concentrations 1 | 9 |
| Figure 5. Stream Comparison: 2004 and Historic Mean Watershed Yields               | 2 |

# INTRODUCTION

## Growth Trends and Challenges for Surface Water Protection

During the last three decades, the population of the seven-county metropolitan area increased by nearly 800,000. The 2000 Census Bureau figures show that in the 1990s, the Metro Area experienced its largest population growth of any decade in history. This growth has brought prosperity – new jobs, rising incomes, new tax revenue, and the highest rate of home ownership in the nation. However, growth also brings challenges for protecting our natural resources. Stormwater runoff from both urban and rural landscapes transports nonpoint source pollution into Metro Area lakes, rivers and streams. Nonpoint pollution is generated by the many diverse land uses in the Metro Area and the everyday activities of its human population. Human activities that create nonpoint source pollution include, among others: applying excessive fertilizer to lawns; plowing fields or operating construction sites in a manner that results in soil erosion; discarding grass clippings into streets or directly into storm drains; and driving cars that leak fluids and exhaust hydrocarbon particulates into the air.

Nonpoint source pollution begins when agricultural production and urban development causes alterations of the natural landscape. Undisturbed vegetation and natural drainage systems filter out pollutants generated by stormwater runoff, and thus minimize impacts on the receiving waters. The efficiency of these natural drainage systems is reduced or negated by an increase in impervious surfaces created by growth, including new structures, wider roads and compacted soils. Numerous scientific studies have shown a direct correlation between increased impervious cover in a watershed and degraded stream water quality. Both the volume and rate of runoff increase in a landscape altered by impervious surfaces and some agricultural practices, and the runoff transports more pollutants into receiving waters.

## **Metropolitan Council Water Resource Programs**

Collectively the nonpoint and point source water resource programs at the Metropolitan Council form the policy basis for achieving the Metropolitan Council's no adverse impact goal: "water quality leaving the Metro Area is as good as the water quality entering the Metro Area, and is in compliance with federal and state regulations" (Metropolitan Council, 2004). No adverse impact means that as a region, we must live within the capacity of the water resource systems to assimilate the activities of our population without furthering harm to our water resources.

The Metropolitan Council has several programs in place that can be used to measure our efforts to meet the no adverse impact goal: our water quantity and quality monitoring programs for streams, rivers and lakes. The Metropolitan Council has been monitoring Metro Area streams since 1989. To achieve greater coverage, in 1995, the Metropolitan Council began working with local partners to monitor a broader network of Metropolitan Area streams. This report also includes information on the Elm and Rice Creek stations, which are monitored by the United States Geological Survey (USGS) and the Rice Creek Watershed District, respectively. Data is collected from 25 streams at 27 monitoring stations.

# METROPOLITAN COUNCIL STREAM MONITORING PROGRAM

#### **Monitoring Sites and Watershed Characteristics**

The Metropolitan Council and local partners are currently monitoring 27 sites on 25 streams in the Metro Area (Table 1 and Figure 1). These streams are tributary to either the Minnesota, Mississippi or St. Croix Rivers. Monitoring sites are generally located near the stream mouths, but are far enough upstream to avoid backwater conditions when the major rivers are at flood stage.

#### **Table 1. Metropolitan Council Stream Monitoring Sites and Partners**

|                                    | Monitoring        |                                        |
|------------------------------------|-------------------|----------------------------------------|
| Stream                             | Start             | Participating Cooperator               |
| Bassett Creek                      | 2000              | Minneapolis Parks and Recreation Board |
| Battle Creek                       | 1996              | Ramsey-Washington Metro WD             |
| Bevens Creek – Lower               | 1989              | Metropolitan Council                   |
| Bevens Creek – Upper               | 1992              | Metropolitan Council                   |
| Bluff Creek                        | 1990              | Metropolitan Council                   |
| Browns Creek                       | 1998              | Washington SWCD                        |
| Cannon River                       | 1999              | Dakota SWCD                            |
| Carnelian-Marine Outlet            | 1995              | Carnelian-Marine WD                    |
| Carver Creek                       | 1989              | Metropolitan Council                   |
| Credit River                       | 1989              | Metropolitan Council                   |
| Crow River                         | 1999              | Wright SWCD                            |
| Eagle Creek                        | 1999              | Lower Minnesota WD                     |
| *Elm Creek                         | 1995              | Elm Creek WMO, USGS                    |
| Fish Creek                         | 1995              | Ramsey-Washington Metro WD             |
| Minnehaha Creek                    | 1999              | Minneapolis Park & Recreation Board    |
| Nine Mile Creek                    | 1989              | Metropolitan Council                   |
| *Rice Creek                        | 1995              | Rice Creek WD                          |
| Riley Creek                        | 1999              | Riley-Purgatory-Bluff Creek WD         |
| Rum River                          | 1996              | Anoka SWCD                             |
| Sand Creek                         | 1989              | Metropolitan Council                   |
| Scott County Ditch 10              | 1999              | Scott County SWCD                      |
| Silver Creek                       | 1998              | Carnelian-Marine WD                    |
| South Fork Crow River              | 2001              | Carver County                          |
| Valley Creek                       | 1999              | Valley Branch WD                       |
| Vermillion River                   | 1995              | Dakota SWCD                            |
| Willow Creek                       | 1999              | Black Dog WMO                          |
| West Branch Raven Creek            | 1999              | Scott County SWCD                      |
| *These sites are no longer part of | f the Metropolite |                                        |

\*These sites are no longer part of the Metropolitan Council monitoring network.

Notes: SWCD (Soil and Water Conservation District) WD (Watershed District) WMO (Watershed Management Organization) USGS (United States Geological Survey)

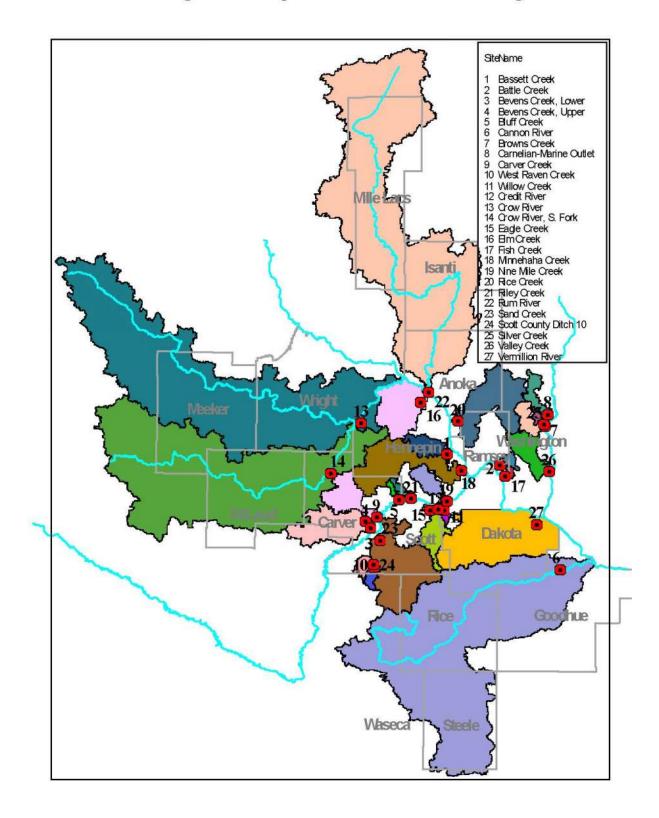



Figure 1. Metropolitan Council Stream Monitoring Sites

Watershed areas for the 25 streams range from 1.2 to 2,622 square miles and land cover ranges from predominantly agricultural to predominantly urban (Table 2). Additional stream and watershed information, including detailed land cover maps for each watershed, can be found in the Metropolitan Council's 2003 stream monitoring reports: *Metropolitan Council Environmental Services 2003 Stream Monitoring Report* (Metropolitan Council, 2004) and the 2003 Stream Monitoring and Assessment for 11 Metropolitan Area Streams report (Metropolitan Council, 2004).

| Monitoring Site            | Major Basin         | Dominant            | Year      | Watershed                  |
|----------------------------|---------------------|---------------------|-----------|----------------------------|
|                            |                     | Land Use            | Initiated | Size (miles <sup>2</sup> ) |
| Bassett Creek              | Mississippi – Upper | Urban               | 2000      | 40                         |
| Battle Creek               | Mississippi - Upper | Urban/Transitional  | 1996      | 11.5                       |
| Bevens Creek - Lower       | Minnesota - Lower   | Agricultural        | 1989      | 130                        |
| Bevens Creek - Upper       | Minnesota - Lower   | Agricultural        | 1992      | 90                         |
| Bluff Creek                | Minnesota - Lower   | Rural/Transitional  | 1990      | 5.7                        |
| Browns Creek               | St. Croix           | Rural/Transitional  | 1998      | 28.6                       |
| Cannon River               | Mississippi – Lower | Agricultural        | 1999      | 1,340                      |
| Carnelian-Marine<br>Outlet | St. Croix           | Rural/Transitional  | 1995      | 30                         |
| Carver Creek               | Minnesota – Lower   | Agricultural        | 1989      | 83                         |
| Credit River               | Minnesota – Lower   | Rural/Transitional  | 1989      | 51                         |
| Crow River                 | Mississippi – Upper | Agricultural        | 1999      | 2,622                      |
| Eagle Creek                | Minnesota – Lower   | Urban/Transitional  | 1999      | 1.2                        |
| Elm Creek                  | Mississippi – Upper | Urban/Transitional  | 1995      | 85                         |
| Fish Creek                 | Mississippi – Upper | Urban/Transitional  | 1995      | 5.1                        |
| Minnehaha Creek            | Mississippi – Upper | Urban/Transitional  | 1999      | 177                        |
| Nine Mile Creek            | Minnesota - Lower   | Urban               | 1989      | 38                         |
| Rice Creek                 | Mississippi – Upper | Urban/Transitional  | 1995      | 185                        |
| Riley Creek                | Minnesota - Lower   | Urban/Transitional  | 1999      | 10.5                       |
| Rum River                  | Mississippi – Upper | Agricultural/Forest | 1996      | 1,552                      |
| Sand Creek                 | Minnesota - Lower   | Agricultural        | 1989      | 233                        |
| Scott County Ditch 10      | Minnesota - Lower   | Agricultural        | 1999      | 16.5                       |
| Silver Creek               | St. Croix           | Rural/Transitional  | 1998      | 7.5                        |
| South Fork Crow River      | Mississippi – Upper | Agricultural        | 2001      | 1,135                      |
| Valley Creek               | St. Croix           | Mixed/Transitional  | 1999      | 13.2                       |
| Vermillion River           | Mississippi – Lower | Agricultural        | 1995      | 270                        |
| Willow Creek               | Minnesota – Lower   | Urban               | 1999      | 8.2                        |
| West Raven Stream          | Minnesota - Lower   | Agricultural        | 1999      | 14.9                       |

#### **Table 2. Stream Monitoring Sites**

# **METHODS**

# **Monitoring Methods**

The following information is a generalized summary of the monitoring equipment and methods used at all Metropolitan Council stream monitoring stations. For more detailed information on equipment and methods, please refer to the 2003 Stream Monitoring and Assessment for 11 Metropolitan Area Streams report (Metropolitan Council, 2004) or visit the stream monitoring section of the Metropolitan Council's website: http://www.metrocouncil.org/environment/RiversLakes. The Metropolitan Council's website at http://www.metrocouncil.org/environment/RiversLakes/Streams/index.htm.

#### **Precipitation Monitoring**

The 2004 precipitation information was acquired from the Minnesota Climatology Working Group's rain gauge network. For each monitoring site, daily precipitation data were obtained from one or several rain gauges in the same watershed or in an adjoining watershed (see Table 3 in Results section).

#### Continuous Monitoring of Flow, Conductivity and Temperature

Each monitoring station is equipped with a datalogger that continuously records 15- minute data for water level (stage), flow, conductivity, and temperature, generating approximately 25,000 records per variable during the open-water season. The open-water season varies from site-to-site and year-to-year, but a typical operational period for the automated equipment is from mid-March through the end of November. When winter ice cover creates very difficult conditions for accurate flow and rating curve measurements, winter flows are estimated.

#### Water Quality Monitoring

Water chemistry samples are collected during both baseflow and runoff conditions. Baseflow conditions are typically represented by monthly grab samples. Runoff conditions are typically represented by flow-weighted composite samples collected via autosampler during all runoff events (generally 10-15 events) in the open water season.

Baseflow and event samples are analyzed for a variety of water quality variables including total chloride, hardness, total metals (Cu, Cd, Cr, Ni, Pb, Zn), total Kjeldahl nitrogen, nitrate-nitrogen, total and dissolved phosphorus, total and volatile suspended solids, and turbidity. Transparency tube measurements are obtained in the field. The variables listed above are not always analyzed at all sites on every sampling occasion. The variables and frequency of analysis depend upon the sample condition (such as holding time requirements and available sample volume) and water quality concerns for a given stream. The Metropolitan Council laboratory analyzes water chemistry samples for all sites except Elm Creek and Rice Creek.

#### **Biological Monitoring**

Macroinvertebrate samples are collected once or twice annually (spring and/or fall) at 12 monitoring sites, using the multi-habitat method. Samples are analyzed by the Department of Entomology at the University of Minnesota, with all macroinvertebrates identified to the genus level, if possible. A variety of metrics, including the Hilsenhoff Biotic Index, are used to determine the health of the

macroinvertebrate community at each of the 12 monitoring sites. Macroinvertebrate monitoring results and metrics for 2004 can be found in Appendix C.

#### Laboratory Analytical Procedures

The Metropolitan Council laboratory analyzes all water samples obtained for the stream monitoring program, except Elm Creek and Rice Creek samples. The Metropolitan Council laboratory is certified under the State of Minnesota laboratory certification program. The Minnesota Department of Health, which is the certifying agency for Minnesota, has assigned the laboratory a certification number of 027-123-172. The analytical methods can be found in the 2003 Stream Monitoring and Assessment for 11 Metropolitan Area Streams report (Metropolitan Council, 2004).

# **Data Assessment Methods**

#### **Loading Calculations**

The term load refers to the total amount or mass of a water quality pollutant delivered by a stream to its receiving water during a given time period, often seasonally or annually. Loading calculations (Appendix D) were completed using the computer model FLUX, a standard assessment technique developed for the United States Army Corps of Engineers (Walker, 1999). The FLUX model is a DOS-based calculation tool that allows the user to estimate loads and flow-weighted mean concentrations for water quality variables, using grab sample concentration data and continuous stream flow records. FLUX incorporates six calculation techniques to map the streamflow and concentration relationship developed from the sample record onto the entire record to calculate total mass discharge and associated error statistics.

The Results and Discussion sections of this report include information on the load estimates and flowweighted mean concentrations for total phosphorus, total dissolved phosphorus, total Kjeldahl nitrogen, nitrate, and total suspended solids.

#### **Trend Analysis**

Trend analysis was performed on annual pollutant loads and annual mean flow-weighted concentrations calculated using FLUX for each stream, using the Kendall Tau test ( $p\leq0.05$ ) (SPSS version 10.0).

# RESULTS

In 2001, 2002 and 2003 Metropolitan Council staff prepared stream monitoring reports that included annual monitoring data from 28-30 Metropolitan Council Metro Area and outstate stream monitoring stations (Metropolitan Council, 2003, 2004, and 2005). For the 2003 stream data, Metropolitan Council staff also prepared a stream assessment report (Metropolitan Council, 2004) that included a more detailed assessment of 11 streams in the metropolitan area: a subset of the streams in the Metropolitan Council's monitoring program and two additional streams (Elm and Rice Creeks) monitored by other agencies (USGS and Rice Creek Watershed District, respectively). The 2003 stream assessment report included analysis of 2003 monitoring data, a historical pollutant loading assessment for the 11 streams completed with the FLUX computer model, and ranking of the streams according to three water quality criteria. The 2004 stream assessment report expands upon the 2003 stream assessment report and includes an assessment for all of the streams in the Metropolitan Council's program as well as for Rice and Elm Creeks. As in the 2003 stream assessment report, this report will include an analysis of 2004 monitoring data, and a historical pollutant loading assessment for the 25 Metro Area streams completed with the FLUX computer model.

## 2004 Climate

Annual statewide total precipitation data for the year 2004 and departure from normal precipitation data as obtained from the Minnesota State Climatology Office can be found at <a href="http://climate.umn.edu/img/annual/p2004.gif">http://climate.umn.edu/img/annual/p2004.gif</a>. Data from the State Climatology Office show the 2004 precipitation totals for the region. In most of the region, precipitation totals ranged from 32-36 inches. Precipitation in the northwest tip of Anoka County ranged from 36-40 inches and precipitation in the southern half of Washington County and a small portion of southern Ramsey County, southeast Hennepin County and northern Dakota County ranged from 28-32 inches. In summary, precipitation for the Metro Area ranged from 28-40 inches and the annual precipitation departure from normal ranged from -2 inches below normal to 6 inches above normal.

Figure 2 shows the monthly total precipitation and departure from normal precipitation for 2004 at the Minneapolis-St. Paul International Airport weather station. Figure 2 indicates that the airport site was slightly drier than normal in 2004. The 30-year (1971-2000) annual average precipitation at the Minneapolis-St. Paul International Airport is 29.41 inches and the total precipitation at the airport site in 2004 was 27.39 inches. Generally, there was below normal precipitation in the winter, close to normal precipitation in the spring, below normal precipitation in the summer and above normal precipitation in the fall.

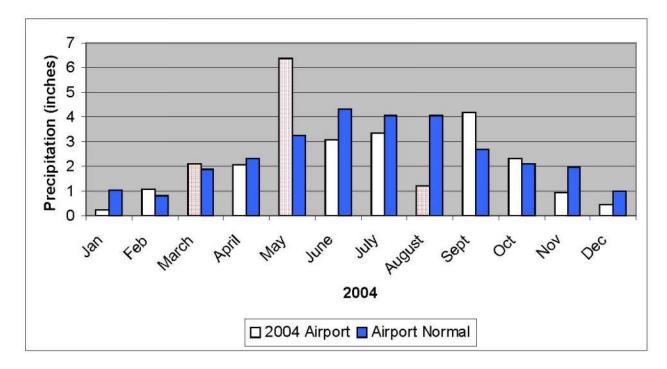
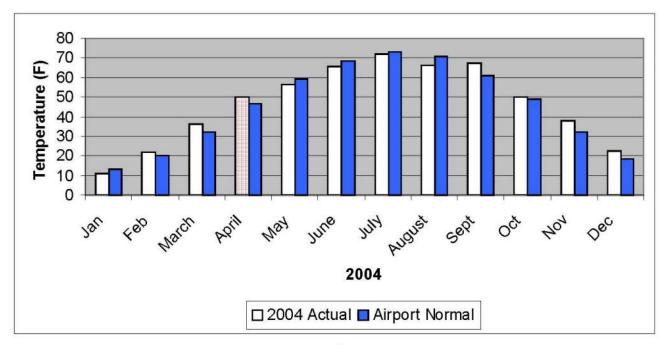




Figure 2. 2004 and Normal Monthly Precipitation at Minneapolis-St. Paul Airport

Figure 3 shows the monthly average temperature and departure from normal temperature for 2004 at the airport weather station. The average monthly temperature for 2004 ranged from 11.2 F in January to 72.2 F in July. Overall the 2004 average monthly temperatures were very close to the normal average monthly temperatures.

Figure 3. 2004 and Normal Monthly Air Temperatures at Minneapolis-St. Paul Airport



Because annual precipitation amounts vary across the Metro Area, each stream was analyzed using data from the meteorological station or stations closest to that stream (Table 3). While the 2004 annual precipitation at the Minneapolis-St. Paul International airport station was 27.39 inches compared to the 30-year average of 29.41 inches, the actual deficit or surplus varied by watershed. The 2004 deficit was greatest for Bluff, Carver, Nine Mile, and Riley Creeks in the Minnesota River Basin, for Bassett, Battle, Minnehaha and Fish Creeks in the Mississippi River Basin and for the St. Croix tributaries. The 2004 precipitation deficit in the Bluff and Carver Creeks was 14% while the 2004 deficit was 13% for the St. Croix tributaries and Riley Creek. Several of the Minnesota River tributaries (Sand Creek and Bevens Creek) and the far western (South Fork of the Crow River) and southern tributaries (Cannon River) of the Mississippi River experienced above-normal precipitation in 2004.

#### 2004 Stream Flow

Appendix A includes the hydrographs for all streams. Each hydrograph portrays the 2004 flow record, showing the daily average flow (solid black line), and daily precipitation. For all sites, except Rice and Elm Creeks, the hydrographs also show the date at which grab and composite samples were collected. Finally, each hydrograph shows the total flow volume and annual water yield.

## Water Chemistry Data

Appendix B summarizes the chemical and physical data collected during 2004 for each stream. For each stream, the number of samples analyzed and the mean, minimum and maximum concentrations are reported for alkalinity, total COD, chloride, sulfate, total Kjeldahl nitrogen, total nitrate, total nitrite, dissolved orthophosphorus, total phosphorus, total dissolved phosphorus, total suspended solids, volatile suspended solids, and turbidity.

An analysis of the chemical data collected during 2004 shows that the mean total phosphorus concentrations are highest for Bevens Creek - Lower, Bevens Creek - Upper, Bluff Creek, Cannon River, South Fork Crow River, Sand Creek, Scott County Ditch 10 and West Raven Creek with concentrations ranging from 400-580 ppb. Mean total phosphorus concentrations are lowest for Carnelian Marine Outlet, Eagle Creek and Valley Creek, with concentrations ranging from 20-90 ppb.

The mean total suspended solids concentrations are highest for Bevens Creek – Lower, Bevens Creek - Upper, Bluff Creek, Cannon River, Nine Mile Creek, Riley Creek, Sand Creek, and West Raven Creek respectively with concentrations ranging from 105-329 ppm and lowest for Carnelian Marine Outlet, Elm Creek, Eagle Creek, Minnehaha Creek and Rum River with concentrations ranging from 2-20 ppm. Phosphorus and solids may be high due to intense agricultural activity, streambank erosion, failing septage systems and excessive use of fertilizers.

The state water quality standard for turbidity as established by the Minnesota Pollution Control Agency, is 25 NTUs. In 2004, six streams had mean turbidity levels that exceeded 25 NTUs, including Bevens Creek – Lower and Upper, Riley Creek, Sand Creek, Scott County Ditch 10 and West Raven Creek. 17 of the 25 streams had more than 10% of their turbidity samples exceeding 25 NTUs. Currently the PCA determines compliance with standards on an annual basis when samples from a site meet the standard 90% of the time.

Generally the more urbanized streams have higher chloride concentrations. The 2004 data support this statement. In 2004, the streams with the highest chloride concentrations are Bassett Creek, Battle

Creek, Fish Creek, Minnehaha Creek, Nine Mile Creek, and Willow Creek with mean chloride concentrations of 153, 166, 110, 107, 94, and 109, respectively.

## Macroinvertebrate Data

Table 4 includes the 2004 macroinvertebrate metrics for the 12 stream monitoring stations (Battle Creek, Bevens Creek - Lower, Bluff Creek, Browns Creek, Credit River, Eagle Creek, Fish Creek, Minnehaha Creek, Sand Creek, Silver Creek, Vermillion River, and Valley Creek) where biological monitoring is conducted. Macroinvertebrate data are analyzed to the genus level. Appendix C includes the organism count, common name, class, order, family, sub-family and genus information for all samples collected and analyzed for each stream. The Hilsenhoff Biotic Index values in Table 5 indicate that water quality was fair (fairly significant organic pollution) in Minnehaha Creek, good (some organic pollution) in Battle Creek, Bluff Creek and Credit River, very good (slight organic pollution) in Bevens, Browns, Eagle, Fish, Sand, Silver and Valley Creeks, and excellent (no apparent organic pollution) in the Vermillion River.

# **Impaired Waters**

Many streams in the metropolitan area are listed as impaired waters by the Minnesota Pollution Control Agency (Table 6). For each affected reach and associated pollutant or stressor, a total maximum daily load (TMDL) study and management plan must be completed by the Minnesota Pollution Control Agency. Table 6 also includes the anticipated start and end date for the TMDL studies. Fifteen of the 25 streams assessed in this report are on the 2004 Impaired Waters List for one or more pollutant violation. Ten of the stream reaches, 70% of which drain to the Minnesota River, are listed for turbidity violations. For more urban watersheds, general and construction site erosion, streambank erosion, or resuspension of particles from creek bottoms may be the cause of higher turbidity levels. For more rural watersheds, agricultural runoff, streambank erosion, or resuspension of particles from creek bottoms may be the cause of higher turbidity levels. Five stream reaches on three streams are impaired for fecal coliform, Bevens Creek, Carver Creek and the Vermillion River. Those stream sections affected by fecal coliform may have atypical discharges of farm animal wastes or discharges from malfunctioning individual on-site sewage disposal systems.

|                          |                    |                                                                            |                            | 1990 - 2004                           |                                      |
|--------------------------|--------------------|----------------------------------------------------------------------------|----------------------------|---------------------------------------|--------------------------------------|
| Stream                   | Receiving<br>River | Proximate Meteorological Stations                                          | 2004<br>Precip<br>(inches) | Average<br>Annual Precip,<br>(inches) | 2004<br>Precip.<br>Difference<br>(%) |
| Bassett                  | Mississippi        | MSP airport (Sta. #215435)                                                 | 27.39                      | 30.96                                 | -11%                                 |
| Battle                   | Mississippi        | St. Paul/St. Paul U of M/Vadnais Lake<br>(Sta. #217377 + #218450 +#218477) | 30.37                      | 34.2                                  | -11%                                 |
| Bevens Creek –<br>Lower  | Minnesota          | Jordan (Sta. #214176)                                                      | 34.81                      | 32.60                                 | +6%                                  |
| Bevens Creek –           | Minnesota          | Jordan (Sta. #214176)                                                      | 34.81                      | 32.60                                 | +6%                                  |
| Upper                    | 16                 |                                                                            | 07.00                      | 21.65                                 | 1 407                                |
| Bluff                    | Minnesota          | Chanhassen/Chaska<br>(Sta. # 211448 + #21465)                              | 27.09                      | 31.65                                 | -14%                                 |
| Browns                   | St Croix           | Stillwater<br>(Sta. #218037)                                               | 30.05                      | 34.62                                 | -13%                                 |
| Cannon                   | Mississippi        | Red Wing Dam #3/Red Wing (Sta. #216822 + #216817)                          | 34.52                      | 31.17                                 | +10%                                 |
| Carnelian-Marine         | St. Croix          | Stillwater<br>(Sta. #218037)                                               | 30.05                      | 34.62                                 | -13%                                 |
| Carver                   | Minnesota          |                                                                            |                            | 31.65                                 | -14%                                 |
| Credit                   | Minnesota          | Shakopee (70 115N 22W 14)                                                  | 32.91                      | 32.81                                 | 0                                    |
| Crow                     | Mississippi        | Rockford (Sta. #217020 + Sta. 119N<br>24W 7)                               | 29.75                      | 30.03                                 | 0                                    |
| Eagle                    | Minnesota          | Shakopee (70 115N 22W 14)                                                  | 32.91                      | 32.81                                 | 0                                    |
| Elm                      | Mississippi        | New Hope / MSP airport (Sta. #215838<br>+ #215435)                         | 32.76                      | 34.34                                 | -5%                                  |
| Fish                     | Mississippi        | St. Paul/St. Paul U of M/Vadnais Lake<br>(Sta. #217377 + #218450 +#218477) | 30.37                      | 34.2                                  | -11%                                 |
| Minnehaha                | Mississippi        |                                                                            | 27.39                      | 30.96                                 | -11%                                 |
| Nine Mile                | Minnesota          | MSP airport (Sta. #215435)                                                 | 27.39                      | 30.96                                 | -11%                                 |
| Rice                     | Mississippi        | Vadnais Lake/ St. Paul/St. Paul UofMn<br>(Sta. #218477 +#217377 +218450)   | 31.11                      | 33.47                                 | -7%                                  |
| Riley                    | Minnesota          | Chaska/Chanhassen<br>(Sta. #211465 & #211448)                              | 27.74                      | 31.89                                 | -13%                                 |
| Rum                      | Mississippi        |                                                                            | 35.32                      | 35.39                                 | 0%                                   |
| Sand                     | Minnesota          | Jordan (Sta. # 214176)                                                     | 34.81                      | 32.60                                 | +6%                                  |
| Scott Cty Ditch 10       | Minnesota          | Jordan (Sta. # 214176)                                                     | 34.81                      | 32.60                                 | +6%                                  |
| Silver                   | St. Croix          | Stillwater (Sta. #218037)                                                  | 30.05                      | 34.62                                 | -13%                                 |
| South Fork Crow<br>River | Mississippi        | Waconia Twp (Sta. 10 116N 25W 2)                                           | 38.79                      | 33.10                                 | +15%                                 |
| Valley                   | St Croix           | Stillwater (Sta. #218037)                                                  | 30.05                      | 34.62                                 | -13%                                 |
| Vermillion               | Mississippi        | Hastings Dam (Sta. #213567)                                                | 32.95                      | 32.73                                 | 0                                    |
| Willow                   | Minnesota          | Shakopee (70 115N 22W 14)                                                  | 32.91                      | 32.81                                 | 0                                    |
| West Raven               | Minnesota          | Jordan (Sta. # 214176)                                                     | 34.81                      | 32.60                                 | +6%                                  |

# Table 3. Meteorological Stations and Annual Precipitation Data for Each Stream

| River            | Date           | Total<br>Taxa | Mean<br>Tolerance | Total EPT*<br>Taxa | % EPT*<br>Taxa | % EPT*<br>Individuals | Total<br>Diptera | %<br>Diptera | % Diptera<br>Individuals | %<br>Chironomidae |
|------------------|----------------|---------------|-------------------|--------------------|----------------|-----------------------|------------------|--------------|--------------------------|-------------------|
|                  |                |               | Value             |                    |                |                       | Taxa             | Taxa         |                          | Individuals       |
| Battle Creek     | 10/11/04       | 24            | 5.5               | 2                  | 8              | 39                    | 17               | 71           | 30                       | 18                |
| Bevens Creek -   | 10/17/04       | 35            | 4.9               | 9                  | 26             | 41                    | 19               | 54           | 41                       | 35                |
| Lower            |                |               |                   |                    |                |                       | 1                | -            |                          |                   |
| Bluff Creek      | 10/17/04       | 29            | 5.4               | 6                  | 21             | 11                    | 15               | 52           | 31                       | 29                |
| Browns Creek     | 10/07/04       | 45            | 4.7               | 12                 | 27             | 60                    | 22               | 49           | 14                       | 10                |
| Credit River     | 10/17/04       | 49            | 4.9               | 8                  | 16             | 23                    | 29               | 59           | 36                       | 32                |
| Eagle Creek      | 10/16/04       | 20            | 5.0               | 1                  | 5              | 81                    | 15               | 75           | 9                        | 4                 |
| Fish Creek       | 10/11/04       | 28            | 5.4               | 4                  | 14             | 27                    | 17               | 61           | 10                       | 9                 |
| Minnehaha Creek  | 10/11/04       | 26            | 5.5               | 6                  | 23             | 17                    | 15               | 58           | 79                       | 76                |
| Sand Creek       | 10/17/04       | 38            | 4.7               | 14                 | 37             | 59                    | 20               | 53           | 28                       | 20                |
| Silver Creek     | 10/07/04       | 35            | 4.7               | 9                  | 26             | 32                    | 18               | 51           | 45                       | 39                |
| Vermillion River | 10/15/04       | 33            | 4.3               | 12                 | 36             | 71                    | 15               | 45           | 16                       | 5                 |
| Valley Creek     | 10/07/04       | 48            | 4.9               | 15                 | 31             | 39                    | 25               | 52           | 10                       | 9                 |
| * EPT = Ephemero | ptera, Plecopt | tera, and Tr  | ichoptera         |                    |                |                       |                  |              |                          |                   |

## Table 4. 2004 Macroinvertebrate Metrics

| River                   | Date        | HBI*       | Water<br>Quality | Degree of Organic Pollution          |  |  |
|-------------------------|-------------|------------|------------------|--------------------------------------|--|--|
| Battle Creek            | 10/11/04    | 4.62       | Good             | Some organic pollution               |  |  |
| Bevens Creek –<br>Lower | 10/17/04    | 4.41       | Very Good        | Slight organic pollution             |  |  |
| Bluff Creek             | 10/17/04    | 4.87       | Good             | Some organic pollution               |  |  |
| Browns Creek            | 10/07/04    | 3.74       | Very Good        | Slight organic pollution             |  |  |
| Credit River            | 10/17/04    | 4.91       | Good             | Some organic pollution               |  |  |
| Eagle Creek             | 10/16/04    | 4.21       | Very Good        | Slight organic pollution             |  |  |
| Fish Creek              | 10/11/04    | 4.07       | Very Good        | Slight organic pollution             |  |  |
| Minnehaha Creek         | 10/11/04    | 5.83       | Fair             | Fairly significant organic pollution |  |  |
| Sand Creek              | 10/17/04    | 4.34       | Very Good        | d Slight organic pollution           |  |  |
| Silver Creek            | 10/07/04    | 4.26       | Very Good        | 1 Slight organic pollution           |  |  |
| Vermillion River        | 10/15/04    | 2.10       | Excellent        | No apparent organic pollution        |  |  |
| Valley Creek            | 10/07/04    | 4.12       | Very Good        | Slight organic pollution             |  |  |
| * Hilsenhoff Biotic     | Index (HBI) | modified t | o include no     | n-arthropod taxa                     |  |  |

### Table 5. Hilsenhoff Biotic Index\*

.

| Table 6. | 2004 MPCA | 303(d) | Impaired | Waters List |
|----------|-----------|--------|----------|-------------|
|          |           |        |          |             |

| Stream Reach                                                             | Yr | Affected use | Pollutant or stressor     | TMDL start/ completion |
|--------------------------------------------------------------------------|----|--------------|---------------------------|------------------------|
| Battle Creek; Battle Cr Lk to Mississippi R                              | 02 | Aquatic life | Impaired biota            | 2008//2015             |
| Bevens Creek; Silver Cr to Minnesota R                                   | 02 | Swimming     | Fecal coliform            | 2005//2008             |
| Bevens Creek; Silver Cr to Minnesota R                                   | 02 | Aquatic life | Turbidity                 | 2005//2009             |
| Bevens Creek; Headwaters (Washington Lk) to Silver Cr                    | 02 | Aquatic life | Chloride                  | 2005//2007             |
| Bevens Creek; Headwaters (Washington Lk) to Silver Cr                    | 02 | Swimming     | Fecal coliform            | 2005//2008             |
| Bevens Creek; Headwaters (Washington Lk) to Silver Cr                    | 02 | Aquatic life | Turbidity                 | 2005//2009             |
| Bluff Creek; Headwaters to Minnesota R                                   | 02 | Aquatic life | Turbidity                 | 2005//2009             |
| Browns Creek; Headwaters to trout stream portion                         | 02 | Aquatic life | Impaired biota            | 2004//2008             |
| Cannon River; Northfield Dam to Lk Byllesby inlet                        | 98 | Aquatic life | Mercury <sup>1</sup> FCA  | 2002//2015             |
| Carver Creek; Headwaters to Minnesota R                                  | 02 | Swimming     | Fecal coliform            | 2005//2009             |
| Carver Creek; Headwaters to Minnesota R                                  | 02 | Aquatic life | Turbidity                 | 2005//2009             |
| Credit River; Headwaters to Minnesota R                                  | 02 | Aquatic life | Turbidity                 | 2006//2010             |
| Crow River; South Fk Crow R to Mississippi R                             | 02 | Aquatic life | Impaired biota            | 2004//2011             |
| Crow River; South Fk Crow R to Mississippi R                             | 02 | Aquatic life | Turbidity                 | 2004//2009             |
| Crow River, South Fk; Buffalo Cr to Crow R                               | 02 | Aquatic life | Impaired biota            | 2005//2012             |
| Crow River, South Fk; Buffalo Cr to Crow R                               | 98 | Aquatic life | Mercury <sup>1</sup> FCA  | 2002//2015             |
| Crow River, South Fk; Otter Cr to Buffalo Cr                             | 98 | Aquatic life | Mercury <sup>1</sup> FCA  | 2002//2015             |
| Elm Creek, Headwaters to Mississippi R                                   | 02 | Aquatic Life | Low Oxygen <sup>2,5</sup> | 2008//2012             |
| Nine Mile Creek; Headwaters to Minnesota R                               | 02 | Aquatic life | Turbidity                 | 2005//2009             |
| Riley Creek; Riley Lk to Minnesota R                                     | 02 | Aquatic life | Turbidity                 | 2005//2009             |
| Rum River; Trott Bk to Mississippi R                                     | 98 | Aquatic life | Mercury <sup>1</sup> FCA  | 2002//2015             |
| Rum River; Cedar Cr to Trott Bk                                          | 98 | Aquatic life | Mercury <sup>1</sup> FCA  | 2002//2015             |
| Rum River; Seelye Bk to Cedar Cr                                         | 98 | Aquatic life | Mercury <sup>1</sup> FCA  | 2002//2015             |
| Rum River; Stanchfield Cr to Seelye Bk                                   | 98 | Aquatic life | Mercury <sup>1</sup> FCA  | 2002//2015             |
| Sand Creek; Porter Cr to Minnesota R                                     | 02 | Aquatic life | Turbidity                 | 2006//2010             |
| Shingle Creek; Headwaters to Mississippi R                               | 98 | Aquatic life | Chloride                  | 2002//2006             |
| Vermillion River/Vermillion Slough; Hastings Dam to<br>Mississippi R     | 98 | Aquatic life | PCB FCA                   | 2002//2015             |
| Vermillion River/Vermillion Slough; Hastings Dam to<br>Mississippi R     | 94 | Aquatic life | Turbidity                 | 2001//2005             |
| Vermillion River; S Br Vermillion R to the Hastings Dam                  | 96 | Swimming     | Fecal coliform            | 1999//2002             |
| Vermillion River; S Br Vermillion R to the Hastings Dam                  | 98 | Aquatic life | PCB FCA                   | 2002//2015             |
| Vermillion River; Below trout stream portion to South Br<br>Vermillion R | 94 | Aquatic life | Fecal coliform            | 1999//2002             |

| Vermillion River; Headwaters to trout stream portion                     | 98 | Aquatic life | PCB FCA                  | 2002//2015 |
|--------------------------------------------------------------------------|----|--------------|--------------------------|------------|
| Vermillion River; Trout stream portion                                   | 98 | Aquatic life | PCB FCA                  | 2002//2015 |
| Vermillion River/Vermillion Slough; Hastings Dam to<br>Mississippi R     | 98 | Aquatic life | Mercury <sup>1</sup> FCA | 2002//2015 |
| Vermillion River; S Br Vermillion R to the Hastings Dam                  | 98 | Aquatic life | Mercury <sup>1</sup> FCA | 2002//2015 |
| Vermillion River; Below trout stream portion to South Br<br>Vermillion R | 98 | Aquatic life | Mercury <sup>1</sup> FCA | 2002//2015 |
| Vermillion River; Headwaters to trout stream portion                     | 98 | Aquatic life | Mercury <sup>1</sup> FCA | 2002//2015 |
| Vermillion River; Trout stream portion                                   | 98 | Aquatic life | Mercury <sup>1</sup> FCA | 2002//2015 |

\* The information in Table 7 is a subset of the MPCA 2004 303(d) impaired waters list.

Notes:

1] Impacts of mercury are mainly regional in expression, so the initial approach will be to complete regional or statewide mercury TMDL reports. This approach could change based on basin planning activities. U.S. EPA Region 5 understands there must be a federal responsibility for the national & international air-borne component of these TMDL reports. "FCA" means Fish Consumption Advisory.

2] Low Oxygen & excess ammonia TMDL report scheduling is dependent upon low flow conditions. The draft schedule may be changed accordingly.

5] When excess ammonia or low dissolved oxygen concentrations is tied to excess nutrients in the watershed, the recommended schedule may have to be lengthened accordingly.

# DISCUSSION

A discussion of both the 2004 and historical data records follows. Water quality parameters to be discussed include flow volume, total phosphorus, total dissolved phosphorus, total suspended solids, total Kjeldahl nitrogen, nitrate, and other minor miscellaneous monitoring data. Discussion is divided into two general sections:

- comparison of streams based on 2004 and historical pollutant loads and concentrations as calculated by FLUX.
- identification of potential trends in stream volume or water quality

Several points should be considered while reviewing the data analyses. The total annual precipitation measured at the Minneapolis/St. Paul International Airport in 2004 was 27.39 inches, as compared to the average annual precipitation of 29.41 inches for the climate-normal period of 1971 - 2000. As discussed earlier in the report, analysis of data from meteorological stations throughout the Metro Area indicates precipitation is also spatially variable (Table 3). Therefore each stream was analyzed using data from the nearest meteorological station.

# 2004 and Historical Average Stream Data Comparisons

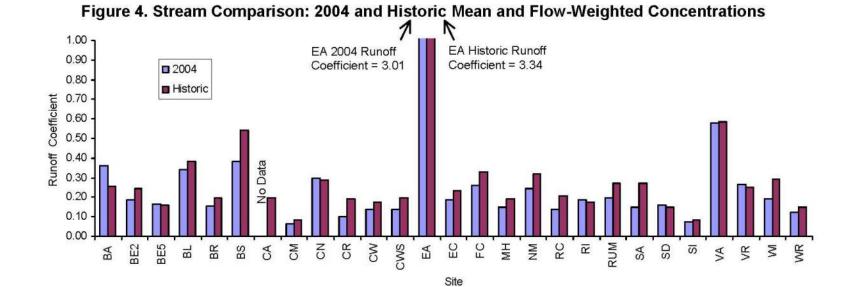
The 2004 hydrographs in Appendix A show that the Cannon River had the greatest total annual flow volume (32 billion ft<sup>3</sup>), followed by the Crow River (25 billion ft<sup>3</sup>), the Rum River (25 billion ft<sup>3</sup>) and the South Fork Crow River (14 billion ft<sup>3</sup>). The watershed area of the Crow, Rum, Cannon, and South Fork Crow River Rivers are 2,622, 1,522, 1, 340 and 1,135 square miles respectively. These rivers are the four largest rivers in this analysis. Fish Creek and Silver Creek had the lowest total annual flow volume. Fish and Silver Creeks had total annual flow volumes of 93 million ft<sup>3</sup> and 39 million fts<sup>3</sup>, respectively. Watershed area and rank for Fish and Silver Creeks are 5.1 square miles (26<sup>th</sup> largest watershed) and 7.5 square miles (24<sup>th</sup> largest watershed). Total flow volume quite clearly is strongly influenced by watershed area in these streams.

The runoff coefficient was determined by dividing the total annual flow volume by the area and by precipitation. When calculating runoff coefficients, the assumption was made that most of the streams had little input from groundwater. The 2004 and historic average runoff coefficients for Metro Area streams in the monitoring network are presented in Figure 4. This parameter indicates the proportion of annual precipitation over the watershed that reaches the stream as stormwater runoff. A high runoff coefficient indicates a watershed with much impervious area or a large network of agricultural drainage tiles and ditches – characteristics that prevent infiltration of precipitation and promote water delivery to the stream. Runoff coefficients for the streams except for Eagle and Valley Creeks ranged from 0.06 - 0.38. Runoff coefficients for Eagle and Valley Creeks were 3.01 and 0.58, respectively. Runoff coefficients will be incongruously high for streams with a large inflow of groundwater such as Eagle and Valley Creeks.

The 2004 and historical average data for total phosphorus, total suspended solids, total dissolved phosphorus, total Kjeldahl nitrogen, and nitrate were plotted for comparison of the streams. Flow-weighted mean concentrations (as calculated using FLUX) are presented in Figure 4 and water and pollutant areal yield (total flow volume or total mass load divided by watershed area) are presented in Figure 5.

The Vermillion River had the highest 2004 and historical flow-weighted mean concentration for total dissolved phosphorus. The Empire Wastewater Treatment Plant is the greatest influence on the concentration. Sand Creek, Bevens Creek - Upper and Lower, Bluff Creek, Crow River, South Fork Crow River, Scott County Ditch 10 and West Raven Creek also each have relatively high flow-weighted mean concentrations of total dissolved phosphorus ranging from 0.166-0.518 mg/l. The high levels for these streams are likely due to the agricultural nature and size of their watersheds. Valley Creek, Silver Creek, Eagle Creek, and Carnelian Marine Outlet had low 2004 and historical annual total dissolved phosphorus concentrations ranging from 0.012-0.030 mg/l, probably due to the small watershed size and relatively rural and urban transitional nature of their watersheds.

Bevens Creek - Upper and Lower, and Sand Creek had the highest 2004 (2.33-3.01mg/l) and historical (2.28-3.06 mg/l) flow-weighted mean concentrations of total Kjeldahl nitrogen. West Raven Creek also had relatively high flow-weighted mean concentrations of total Kjeldahl nitrogen for 2004 (2.43 mg/l). There is no historic data for this parameter at the West Raven Creek site. Bevens Creek - Upper and Lower, and Scott County Ditch 10 had the highest 2004 (7.9-15.9 mg/l) and historical (7.9-12.3 mg/l) flow-weighted mean concentrations for nitrate. The higher nitrate and total Kjeldahl nitrogen concentrations are likely due to the agricultural nature of these watersheds.


The Vermillion River, Bevens Creek – Upper and Lower, Riley Creek, Sand Creek and West Raven had the highest total phosphorus flow-weighted mean concentrations, ranging from 0.60-0.64 mg/l in 2004. The annual average total phosphorus concentration in the Empire Wastewater Treatment Plant effluent discharge to the Vermillion River is 4.8 mg/l, thereby serving as a major source of phosphorus to the river. The Empire Wastewater Treatment Plant effluent will be diverted from the Vermillion River and discharged directly into the Mississippi River within the next few years. Carnelian Marine Outlet, Eagle, Valley, Minnehaha and Silver Creeks had the lowest total phosphorus flow-weighted mean concentrations, ranging from 0.02-0.09 mg/l.

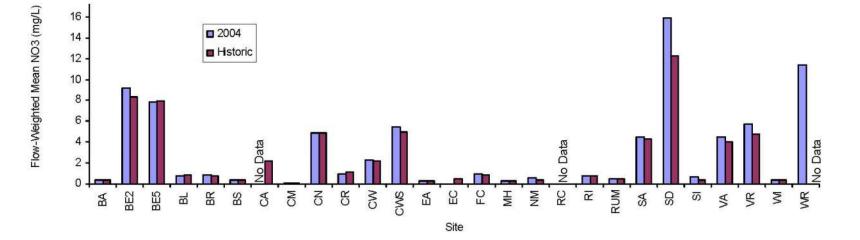
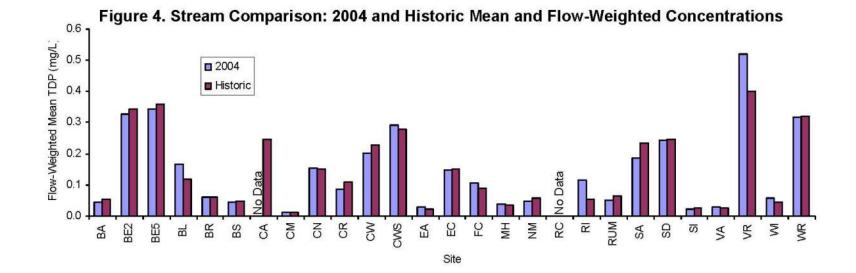
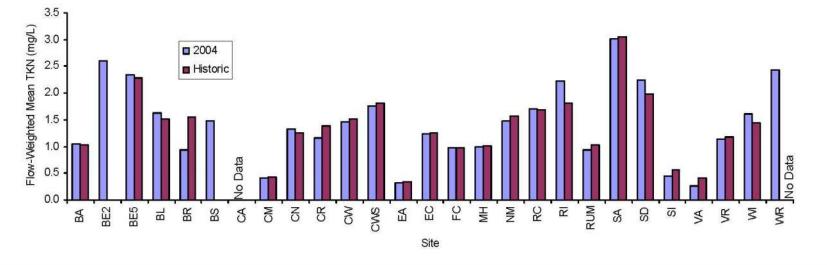
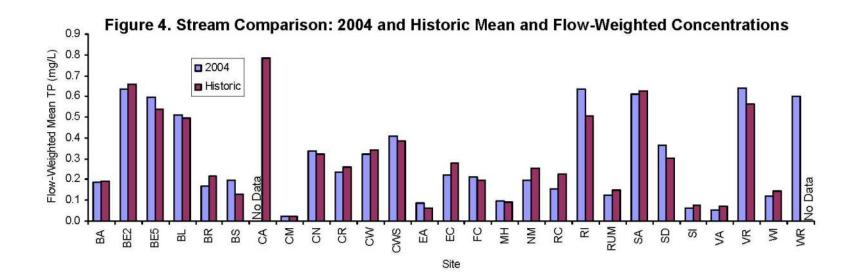

Riley Creek, Bluff Creek, Bevens Creek - Upper and Lower, West Raven Creek and Sand Creek had the highest 2004 flow-weighted mean concentrations of total suspended solids ranging from 237-639 mg/l (2004 flow data was not available for Carver Creek). Riley Creek, Sand Creek, Bluff Creek, Bevens Creek - Upper and Lower, and Carver Creek had the highest historical flow-weighted mean concentrations of total suspended solids ranging from 216-434 mg/l. The higher total suspended solids concentrations are likely due to the agricultural nature of these watersheds. Carnelian Marine Outlet, Eagle Creek, Elm Creek, Minnehaha Creek, Rum River, Silver Creek and Valley Creek had the lowest 2004 flow-weighted mean concentrations of total suspended solids ranging from 2-23 mg/l.

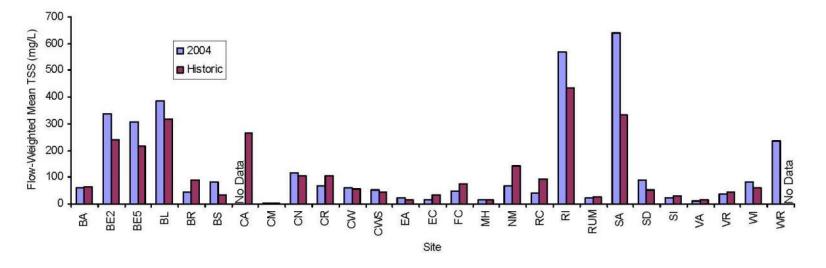
Figure 5 illustrates the water and pollutant yields of each watershed. The water yield (total annual flow divided by the watershed area) standardizes flow volumes so watershed area is excluded from analysis of the annual volumes in each stream. Thus, stream water yields can be directly compared to one another, thereby providing a general indication of watershed characteristics, precipitation variability, and groundwater effects. Water yield is expressed in centimeters. In 2004, Eagle Creek had the greatest water yield (251.6 centimeters), followed by Valley Creek (44.3 centimeters), Battle Creek (28 centimeters), Bassett Creek (26.6 centimeters), Cannon River (26.1 centimeters), Bluff Creek (23.3 centimeters) and the Vermillion River (22.1 centimeters). Flows in Eagle and Valley Creeks are strongly augmented by groundwater inputs, thus increasing the water yield. Silver Creek (5.7 centimeters), Carnelian Marine Outlet (4.9 centimeters) and Credit River (8.2 centimeters) had the lowest water yields in 2004.


The pollutant yield is calculated by dividing the total annual pollutant load by the watershed area of the stream, and is expressed in kg/ha. This analysis standardizes annual loads by removing the effect of the watershed size. A small stream may have a relatively low annual total phosphorus load, but may have a high yield of total phosphorus per hectare, indicating poor management of nutrients within the watershed. The majority of the Minnesota River tributaries (Bevens Creek - Upper and Lower, Bluff, Riley, and Sand Creeks) have the largest per-hectare total suspended solids and nutrients yields. These watersheds are generally agricultural or rural and urban transitional in nature. Eagle Creek also has a relatively high total suspended solids yield.

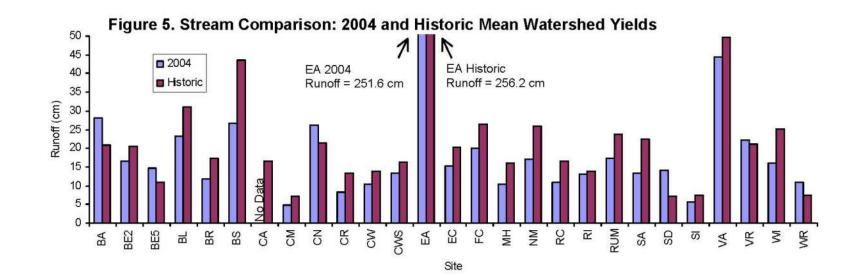

Bevens Creek - Upper and Lower, Bluff Creek, Eagle Creek and the Vermillion River have the highest total phosphorus yields ranging from 0.88-2.22 kg/ha. Bevens Creek - Upper and Lower, Cannon River, Scott County Ditch 10, Valley Creek, Vermillion River and West Raven Creek have the highest nitrate yields ranging from 11.62-22.59 kg/ha. All of these watersheds except for Eagle Creek are primarily agricultural in nature. Eagle Creek is mostly urban/transitional.

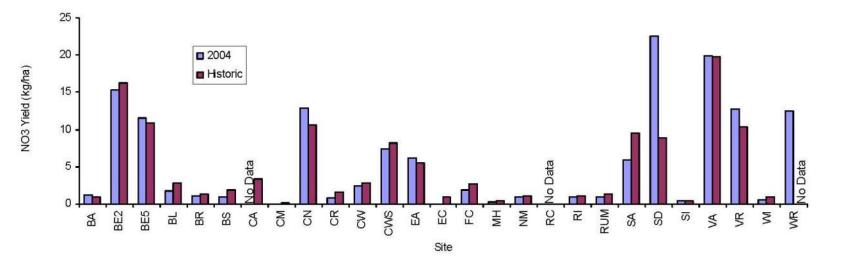




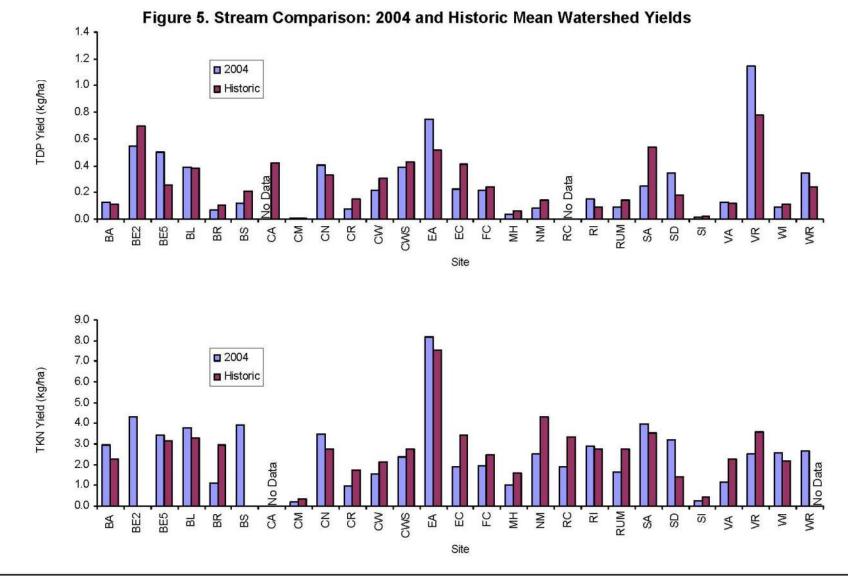


| BA = Battle Creek         | CA = Carver Creek            | EA = Eagle Creek     | RI = Riley Creek           | VR = Vermillion River |
|---------------------------|------------------------------|----------------------|----------------------------|-----------------------|
| BE2 = Bevens Creek, Lower | CM = Carnelian Marine Outlet | EC = Elm Creek       | RUM = Rum River            | WI = Willow Creek     |
| BE5 = Bevens Creek, Upper | CN = Cannon River            | FC = Fish Creek      | SA = Sand Creek            | WR = West Raven Creek |
| BL = Bluff Creek          | CR = Credit River            | MH = Minnehaha Creek | SD = Scott County Ditch 10 |                       |
| BR = Browns Creek         | CW = Crow River              | NM = Nine Mile Creek | SI = Silver Creek          |                       |
| BS = Bassett Creek        | CWS = Crow River South Fork  | RC = Rice Creek      | VA = Valley Creek          |                       |



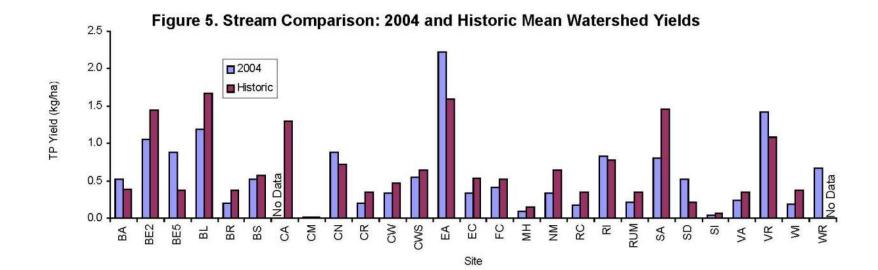


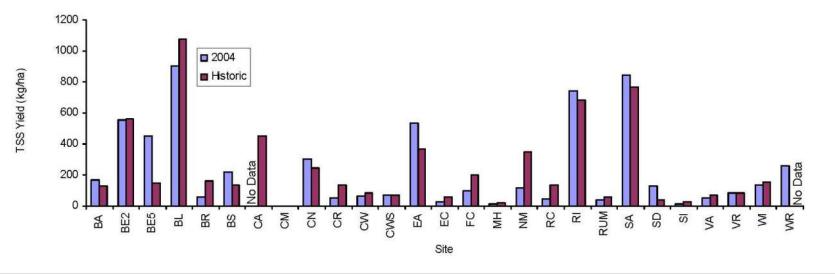


| BA = Battle Creek         | CA = Carver Creek            | EA = Eagle Creek     | RI = Riley Creek           | VR = Vermillion River |
|---------------------------|------------------------------|----------------------|----------------------------|-----------------------|
| BE2 = Bevens Creek, Lower | CM = Carnelian Marine Outlet | EC = Elm Creek       | RUM = Rum River            | WI = Willow Creek     |
| BE5 = Bevens Creek, Upper | CN = Cannon River            | FC = Fish Creek      | SA = Sand Creek            | WR = West Raven Creek |
| BL = Bluff Creek          | CR = Credit River            | MH = Minnehaha Creek | SD = Scott County Ditch 10 |                       |
| BR = Browns Creek         | CW = Crow River              | NM = Nine Mile Creek | SI = Silver Creek          |                       |
| BS = Bassett Creek        | CWS = Crow River South Fork  | RC = Rice Creek      | VA = Valley Creek          |                       |






| BA = Battle Creek         | CA = Carver Creek            | EA = Eagle Creek     | RI = Riley Creek           | VR = Vermillion River |
|---------------------------|------------------------------|----------------------|----------------------------|-----------------------|
| BE2 = Bevens Creek, Lower | CM = Carnelian Marine Outlet | EC = Elm Creek       | RUM = Rum River            | WI = Willow Creek     |
| BE5 = Bevens Creek, Upper | CN = Cannon River            | FC = Fish Creek      | SA = Sand Creek            | WR = West Raven Creek |
| BL = Bluff Creek          | CR = Credit River            | MH = Minnehaha Creek | SD = Scott County Ditch 10 |                       |
| BR = Browns Creek         | CW = Crow River              | NM = Nine Mile Creek | SI = Silver Creek          |                       |
| BS = Bassett Creek        | CWS = Crow River South Fork  | RC = Rice Creek      | VA = Valley Creek          |                       |




| BA = Battle Creek         | CA = Carver Creek            | EA = Eagle Creek     | RI = Riley Creek           | VR = Vermillion River |
|---------------------------|------------------------------|----------------------|----------------------------|-----------------------|
| BE2 = Bevens Creek, Lower | CM = Carnelian Marine Outlet | EC = Elm Creek       | RUM = Rum River            | WI = Willow Creek     |
| BE5 = Bevens Creek, Upper | CN = Cannon River            | FC = Fish Creek      | SA = Sand Creek            | WR = West Raven Creek |
| BL = Bluff Creek          | CR = Credit River            | MH = Minnehaha Creek | SD = Scott County Ditch 10 |                       |
| BR = Browns Creek         | CW = Crow River              | NM = Nine Mile Creek | SI = Silver Creek          |                       |
| BS = Bassett Creek        | CWS = Crow River South Fork  | RC = Rice Creek      | VA = Valley Creek          |                       |



| BA = Battle Creek         | CA = Carver Creek            | EA = Eagle Creek     | RI = Riley Creek           | VR = Vermillion River |
|---------------------------|------------------------------|----------------------|----------------------------|-----------------------|
| BE2 = Bevens Creek, Lower | CM = Carnelian Marine Outlet | EC = Elm Creek       | RUM = Rum River            | WI = Willow Creek     |
| BE5 = Bevens Creek, Upper | CN = Cannon River            | FC = Fish Creek      | SA = Sand Creek            | WR = West Raven Creek |
| BL = Bluff Creek          | CR = Credit River            | MH = Minnehaha Creek | SD = Scott County Ditch 10 |                       |
| BR = Browns Creek         | CW = Crow River              | NM = Nine Mile Creek | SI = Silver Creek          |                       |
| BS = Bassett Creek        | CWS = Crow River South Fork  | RC = Rice Creek      | VA = Valley Creek          |                       |





| BA = Battle Creek         | CA = Carver Creek            | EA = Eagle Creek     | RI = Riley Creek           | VR = Vermillion River |
|---------------------------|------------------------------|----------------------|----------------------------|-----------------------|
| BE2 = Bevens Creek, Lower | CM = Carnelian Marine Outlet | EC = Elm Creek       | RUM = Rum River            | WI = Willow Creek     |
| BE5 = Bevens Creek, Upper | CN = Cannon River            | FC = Fish Creek      | SA = Sand Creek            | WR = West Raven Creek |
| BL = Bluff Creek          | CR = Credit River            | MH = Minnehaha Creek | SD = Scott County Ditch 10 |                       |
| BR = Browns Creek         | CW = Crow River              | NM = Nine Mile Creek | SI = Silver Creek          |                       |
| BS = Bassett Creek        | CWS = Crow River South Fork  | RC = Rice Creek      | VA = Valley Creek          |                       |

# **Trend Analysis**

Trend analysis was performed on annual loads and flow-weighted mean concentrations of pollutants (calculated using FLUX for each stream), using the Kendall Tau test ( $p \le 0.05$ ) (SPSS version 10.0). The Kendall Tau test was appropriate for this analysis, as it does not require normal distribution of data. Correlation coefficients (tau-b) for the Kendall Tau test range in value from -1 (a perfect negative relationship) to +1 (a perfect positive relationship). A value of 0 indicates no linear relationship. Correlation coefficients significant at the 0.05 (95% certainty) level are identified with a single asterisk, and those significant at the 0.01 (99% certainty) level are identified with two asterisks. Therefore the closer the coefficient is to 1 or -1, the stronger the indication of possible trend.

The stream monitoring program administered by the Metropolitan Council has been designed to collect data necessary to assess annual pollutant loads delivered by each stream to the recipient main stem river. While the stream monitoring program was not designed to assess trends, trend analysis may be performed on the annual results.

The Kendall Tau test did identify some potential trends (Table 7). However, identification of a potential trend may not mean that an actual trend exists. Presence of supplemental evidence helps to explain changes in water quality or quantity. For future versions of this report, local governmental units will be surveyed regarding changes in watershed land use or installation of BMP or restoration projects. Determination of changes in watershed land use practices or policies and annual reassessment of monitoring data will be necessary to help explain the trends.

Evidence exists to explain trends in Nine Mile Creek water quality. The Nine Mile Creek Watershed District completed the Lower Valley Project around 1993. This project stabilized scarps and restored streambed stability in the Nine Mile Creek segment just south of Old Shakopee Road to just upstream of the stream outlet to the Minnesota River. It is likely that concentrations of TSS, TP, and TDP have decreased as a result of the stabilization project.

| Site                 | Variable | Tau-b    | Ν  | Sig. (2-tailed) | Confidence |
|----------------------|----------|----------|----|-----------------|------------|
| Bevens Creek – Lower | TP mg/l  | 600(**)  | 15 | 0.002           | Good       |
| Bluff Creek          | NO3 mg/l | 692(**)  | 13 | 0.001           | Good       |
| Bluff Creek          | TP kg    | 436(*)   | 13 | 0.038           | Fair       |
| Elm Creek            | NO3 mg/l | .667(*)  | 9  | 0.012           | Fair       |
| Elm Creek            | TSS mg/l | 683(**)  | 16 | 0.000           | Good       |
| Nine Mile Creek      | NO3 kg   | .451(*)  | 14 | 0.025           | Fair       |
| Nine Mile Creek      | NO3 mg/l | .451(*)  | 14 | 0.025           | Fair       |
| Nine Mile Creek      | TDP mg/l | 560(**)  | 14 | 0.005           | Good       |
| Nine Mile Creek      | TP mg/l  | 692(**)  | 14 | 0.001           | Good       |
| Nine Mile Creek      | TSS mg/l | 802(**)  | 14 | 0.000           | Good       |
| Sand Creek           | TDP kg   | 448(*)   | 15 | 0.020           | Good       |
| Sand Creek           | TP mg/l  | 505(**)  | 15 | 0.009           | Good       |
| Sand Creek           | TSS mg/l | .467(*)  | 15 | 0.015           | Good       |
| Vermillion River     | NO3 mg/l | .714(*)  | 7  | 0.024           | Fair       |
| Vermillion River     | TDP kg   | .644(**) | 10 | 0.009           | Good       |

## Table 7. Results of Kendall Tau Trend Analysis

\* Only results for streams showing a potential trend are reported in the table.

## CONCLUSIONS

This report has presented descriptive water quality data assessments for 27 sites on 25 streams: Bassett, Battle, Bevens Creek - Lower, Bevens Creek - Upper, Browns, Bluff, Carver, Eagle, Elm, Fish, Minnehaha, Nine Mile, Rice, Riley, Sand, Silver, Valley and Willow Creeks, Cannon, Credit, Crow, South Fork Crow River, Rum and Vermillion Rivers, and Carnelian-Marine Outlet, Scott County Ditch 10, and West Raven Stream.

Comparisons of the 2004 flow-weighted mean concentrations indicate that:

- The Vermillion River delivered the highest flow-weighted mean concentrations of total phosphorus and nitrate to the Mississippi River.
- Sand Creek delivered the highest flow-weighted mean concentrations of total suspended solids and Scott County Ditch 10 delivered the highest flow-weighted mean concentrations of nitrate to the Minnesota River.
- The St. Croix Tributaries had comparatively low flow-weighted mean concentrations of total suspended solids, total phosphorus, and nitrate compared to the other streams monitored.
- The Vermillion River flow and pollutant load is affected by effluent discharge from the Empire Wastewater Treatment Plant.

Comparisons of 2004 watershed yields indicate that:

- Bluff, Sand and Riley Creeks had the highest pollutant yields (kg/ha) of total suspended solids.
- Bevens Creek Upper and Lower, Bluff Creek, Eagle Creek and the Vermillion River had the highest pollutant yields (kg/ha) of total phosphorus.
- Scott County Ditch 10, Valley Creek, and Bevens Creek Upper and Lower, Cannon River, Vermillion River and West Raven Stream had the highest pollutant yields (kg/ha) of nitrate.
- In general, the streams tributary to the Minnesota River had the greatest total suspended solids, total phosphorus and nitrate yields (kg/ha) of the 27 sites assessed.
- Valley Creek showed low pollutant yields except for nitrate, which is likely influenced by substantial groundwater discharge to the creek.

## RECOMMENDATIONS

The Metropolitan Council's stream monitoring program collects not only daily flow rate but also a wide range of data on chemical, physical and biological parameters. This report shows that data collected since 1989 provides a detailed picture of water quality in the Metro Area streams. The data collected will support management decisions made to improve water quality in all of the Metro Area streams.

The following recommendations are made to strengthen the Metropolitan Council's stream monitoring program and to provide beneficial data for both the Metropolitan Council's Pollutant Load project and the MPCA's Total Maximum Daily Load Program.

- The Metropolitan Council's stream monitoring program currently focuses on collection and assessment of chemical and physical data. This year the Metropolitan Council increased its macroinvertebrate sampling program (macroinvertebrate data have been obtained for 12 streams since 2001, with genus-level ID beginning in 2004). Macroinvertebrate data are needed to assess the ecological health of these streams. Macroinvertebrate samples should be collected and assessed to at least the genus level. Samples should be collected at least twice annually at all sites for comparison with standard biotic indices such as the Hilsenhoff Biotic Index and/or the Shannon-Wiener Diversity Index.
- 2. Metropolitan Council staff should conduct a survey of watershed districts, soil and water conservation districts, counties and cities to identify changes in land use, construction of major projects, or stream bank erosion within watersheds that may affect, either positively or negatively, the quality of the stream. The completion date of specific projects should be noted to aid in trend analysis interpretation.
- 3. Metropolitan Council staff are currently designing a set of protocols to ensure continued quality assurance of sample collection and handling (stream monitoring QAPP is complete and available on the web), prompt reviewing and proofing of data, and prompt availability of final stream data for use by other agencies and the public. It is recommended that these protocols be instituted as soon as completed during 2006.
- 4. Metropolitan Council staff need to develop a grading system similar to the lake monitoring grading system to aid in quick and easy determination of the condition of area streams.

#### REFERENCES

Almendinger, J.E., Schottler, S.P., and Thommes, K.E., 1999. Monitoring and Modeling Valley Creek Watershed: 3 Surface-Water Hydrology. Report to the Legislative Commission on Minnesota Resources. St. Croix Watershed Research Station, Science Museum of Minnesota. St. Paul, MN.

Carver County, Minnesota. 2003. Carver County 2003 Water Quality Report.

City of Chanhassen. 1996. Bluff Creek Watershed Natural Resources Management Plan.

Dakota County. 2002. Vermillion River Volume Study.

Elm Creek Watershed Management Commission. 2002. Watershed Management Plan.

McCollor, S. and S. Heiskary. 1993. Selected Water Quality Characteristics of Minimally Impacted Streams from Minnesota's Seven Ecoregions. Minnesota Pollution Control Agency.

Metropolitan Council - Environmental Services. 2004. 2002 Stream Monitoring Report.

Metropolitan Council – Environmental Services. 2004. 2003 Stream Monitoring and Assessment for 11 Metropolitan Area Streams.

Metropolitan Council. 2004. 2030 Regional Development Framework.

Metropolitan Council, 2004. Regional Progress in Water Quality: Analysis of Water Quality Data from 1976 to 2002 for the Major Rivers in the Twin Cities. Publication No. 32-04-045.

Metropolitan Council. 2005. 2030 Water Resources Management Policy Plan.

Metropolitan Council - Environmental Services. 2005. 2003 Stream Monitoring Report.

Minnesota Pollution Control Agency, 2004. Guidance Manual for Assessing the Quality of Minnesota Surface Waters for the Determination of Impairment: 305(b) Report and 303(d) List.

Nine Mile Creek Watershed District. 1996. Nine Mile Creek Watershed District Water Management Plan.

Rice Creek Watershed District. 1997. Water Resource Management Plan.

Riley-Purgatory-Bluff Creek Watershed District. 1997. Bluff Creek Corridor Feasibility Study.

Riley-Purgatory-Bluff Creek Watershed District. 1996. Water Management Plan.

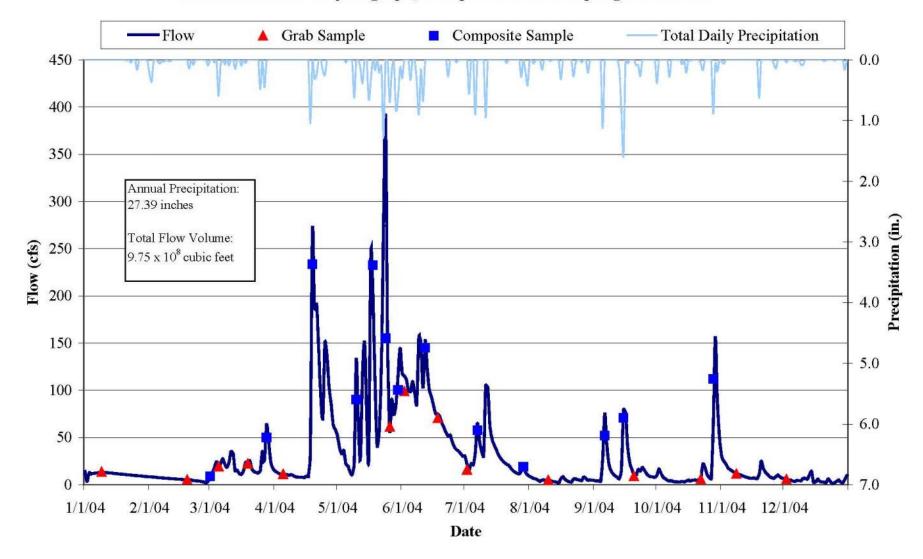
Scott Water Management Organization. 2003. Comprehensive Water Resource Management Plan 2003 – 2008.

St. Croix Watershed Research Station. 2003. Watershed Hydrology of Valley Creek and Browns Creek: Trout streams influenced by agriculture and urbanization in eastern Washington County, Minnesota, 1998-99.

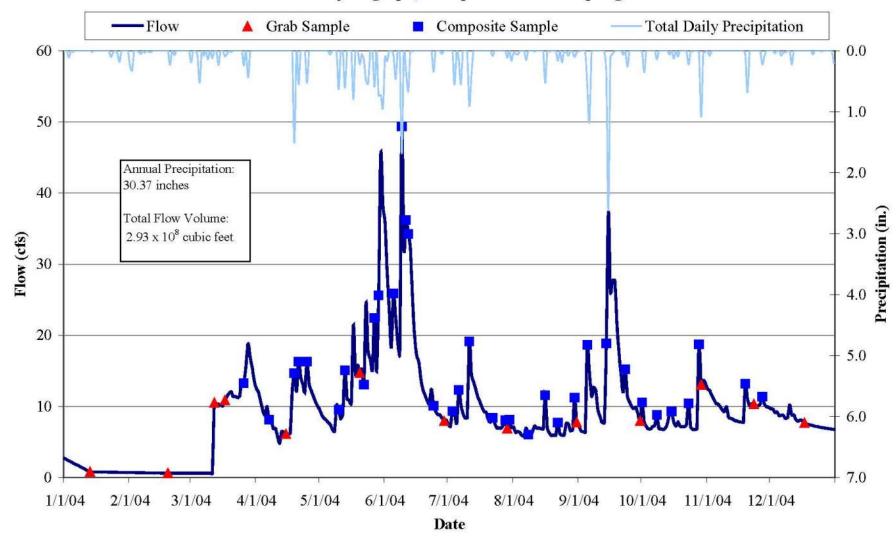
University of Minnesota – Department of Landscape Architecture. An Atlas of Watershed Structure in the Browns Creek and Valley Creek Basins.

University of Minnesota – Department of Landscape Architecture. 2003. An Examination of the Relationship Between Watershed Structure and Water quality in the Valley Creek and Browns Creek Watersheds.

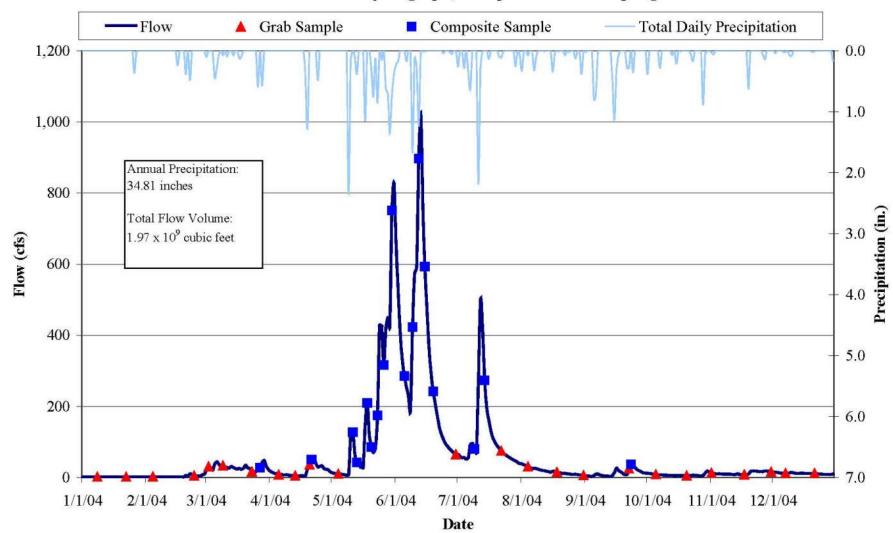
Valley Branch Watershed District. 2005. Watershed Management Plan.


Vermillion River Watershed Management Commission and Minnesota Department of Natural Resources. 1999. *Vermillion River Assessment*.

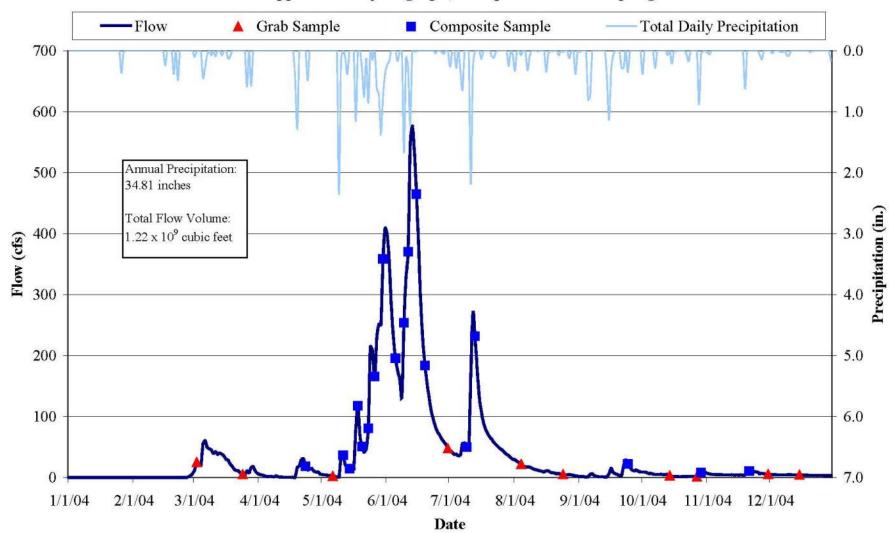
Vermillion River Joint Powers Board. 2005. Vermillion River Watershed Management Plan.


Zapp, M.J. and J.E. Almendinger, 2001. Nutrient Dynamics and Water Quality of Valley Creek, a High-quality Trout Stream in Southeastern Washington County. Final Report to the Valley Branch Watershed District. St. Croix Watershed Research Station, Science Museum of Minnesota.

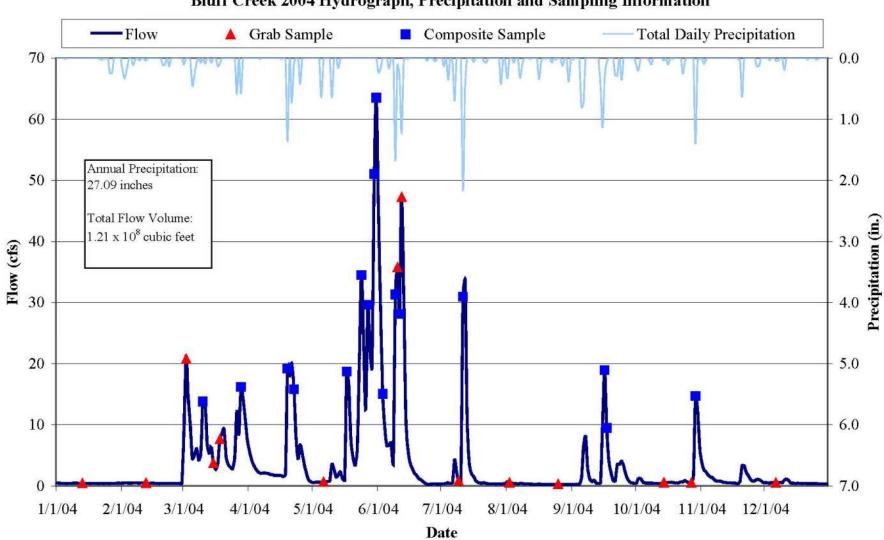
## **APPENDIX A: HYDROGRAPHS**


Annual hydrographs illustrate the seasonal variations in flow rate and peak flows characteristic of a stream. Flow variations are due to annual snow depth; rate of spring snowmelt; the magnitude of spring, summer and fall rainfall; the relationship of time between storms and resulting soil dryness (also referred to as "antecedent conditions"); the amount of impervious surface in the watershed; and the buffering influence of ponds, lakes, and wetlands on flow rate. The hydrograph may also be used to assess the monitoring program used to sample a stream. To best determine water quality conditions in a stream, samples should be taken during a variety of flow regimes, such as at maximum flow for storm events, during intermediate flows, and during baseflow conditions. Most samples should be collected at high flows as most chemical constituents are transported in the stream at that time.

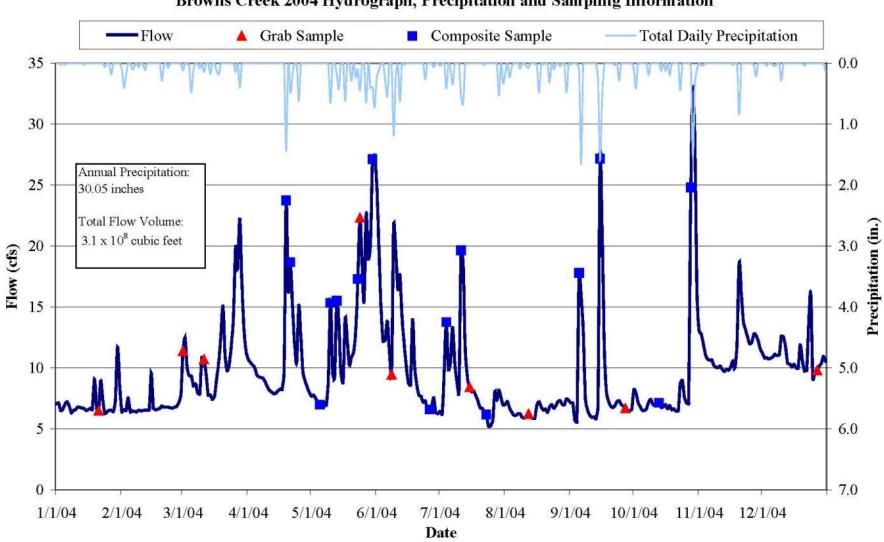



#### Bassett Creek 2004 Hydrograph, Precipitation and Sampling Information

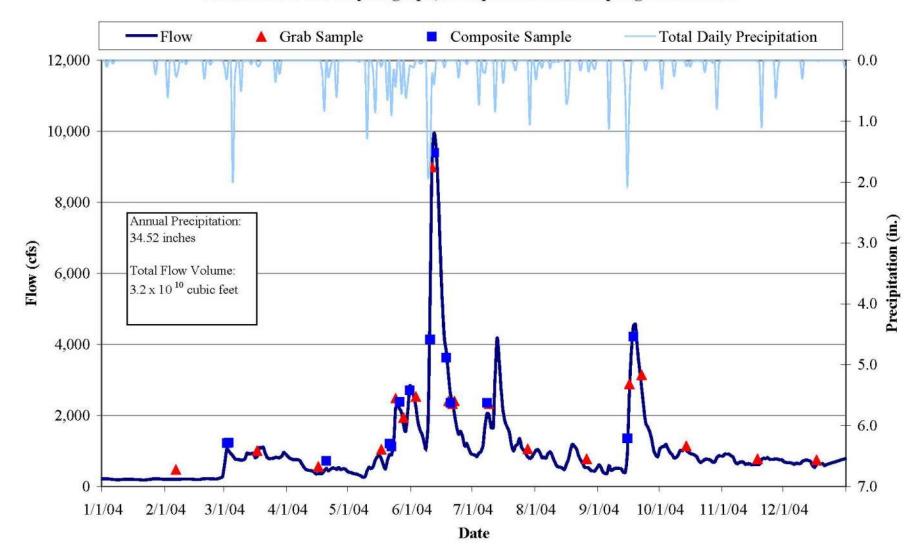



Battle Creek 2004 Hydrograph, Precipitation and Sampling Information

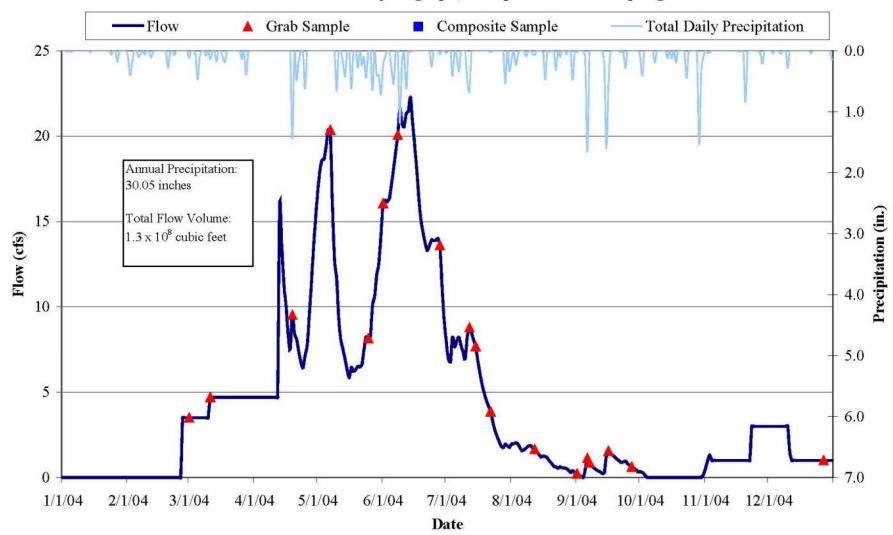



Bevens Creek - Lower 2004 Hydrograph, Precipitation and Sampling Information

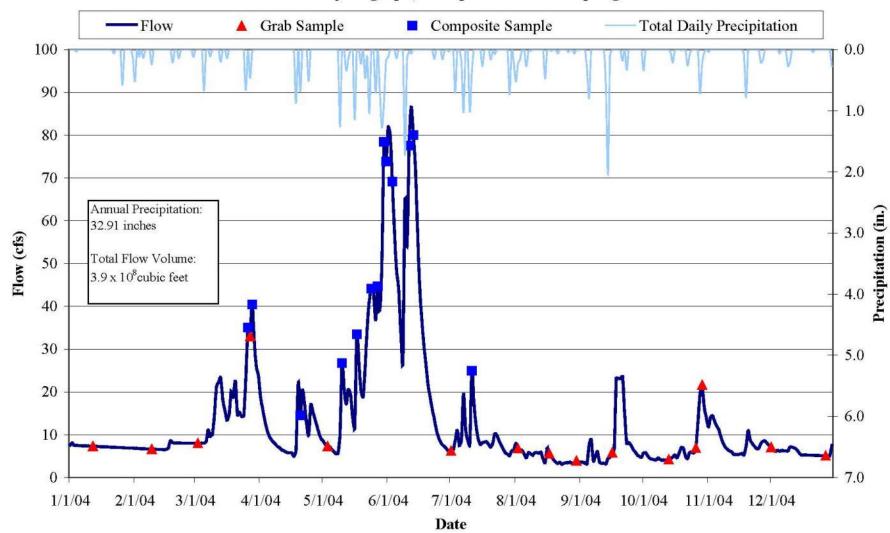



Bevens Creek - Upper 2004 Hydrograph, Precipitation and Sampling Information

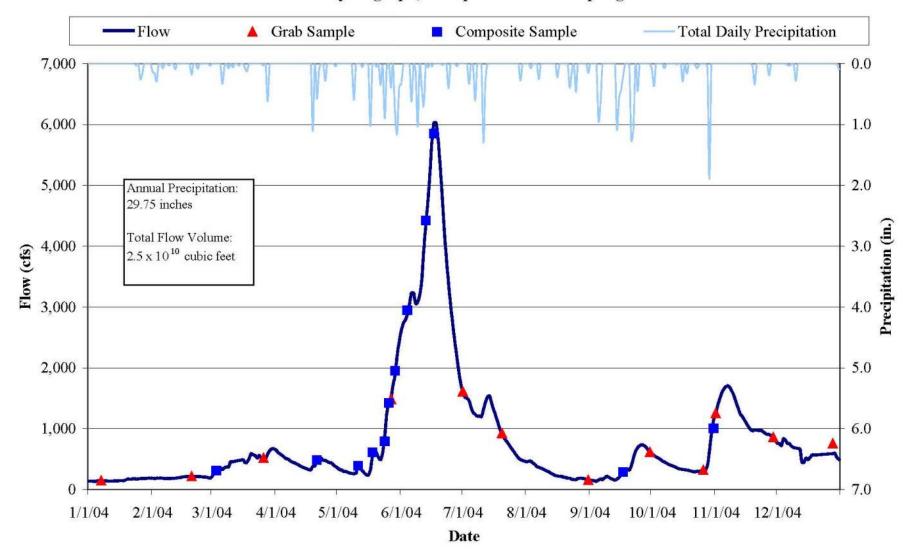



Bluff Creek 2004 Hydrograph, Precipitation and Sampling Information

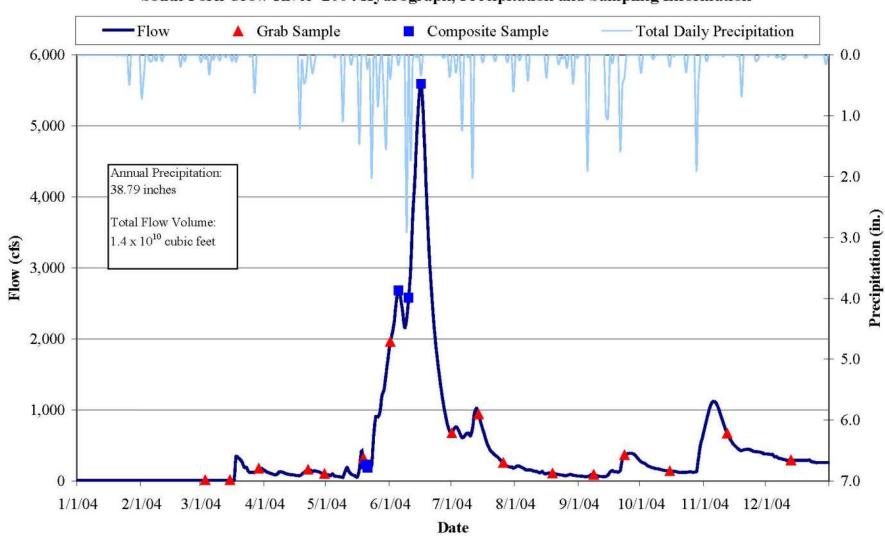



#### Browns Creek 2004 Hydrograph, Precipitation and Sampling Information

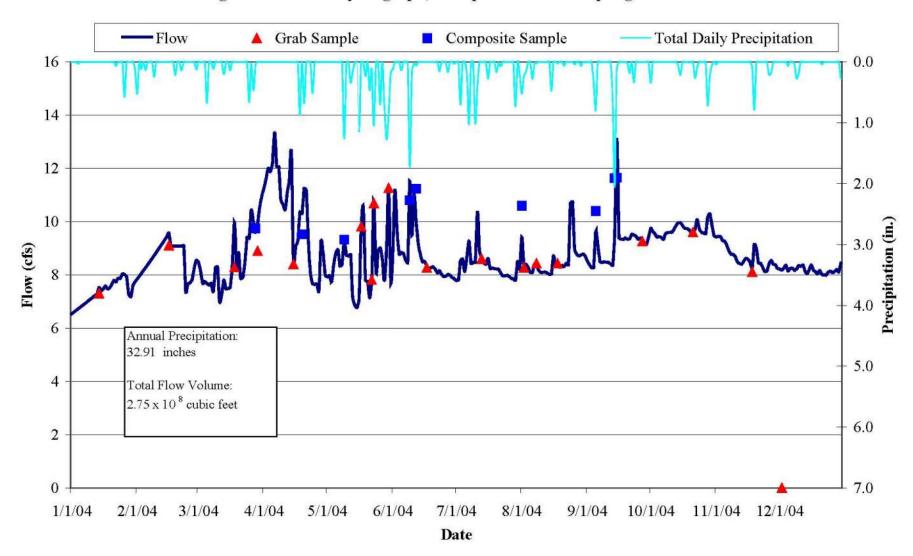



Cannon River 2004 Hydrograph, Precipitation and Sampling Information

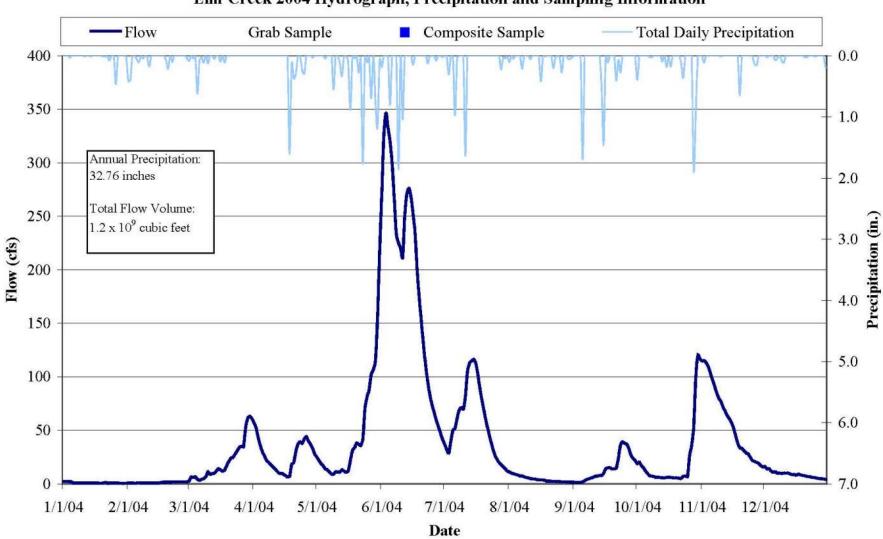



Carnelian Marine Outlet 2004 Hydrograph, Precipitation and Sampling Information

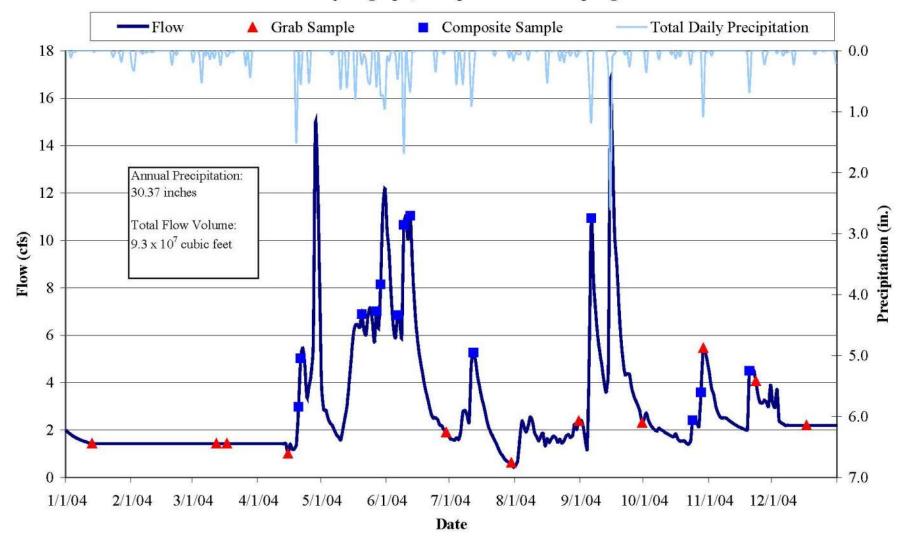



Credit River 2004 Hydrograph, Precipitation and Sampling Information

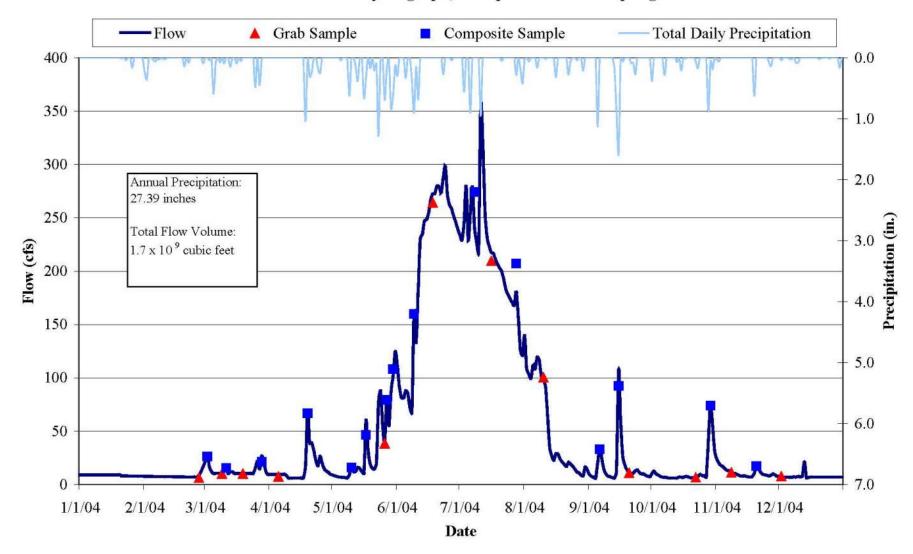



Crow River 2004 Hydrograph, Precipitation and Sampling Information

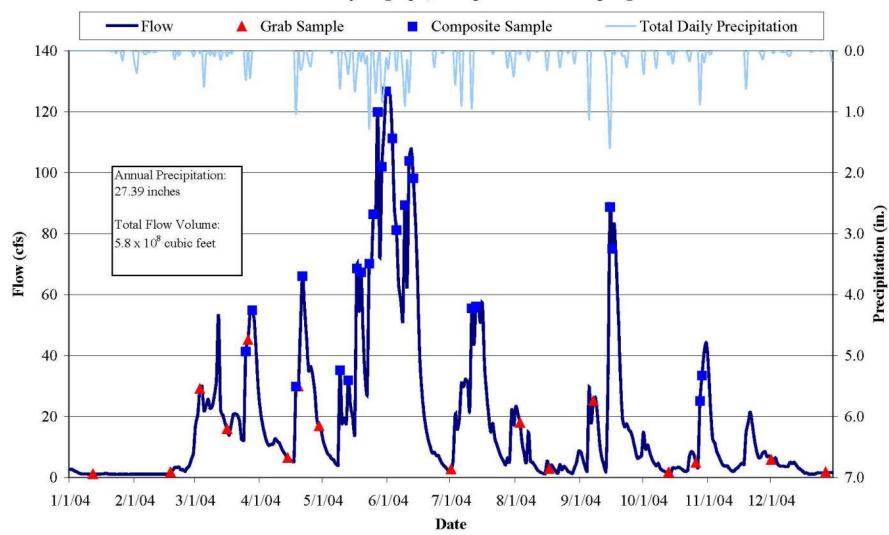



South Fork Crow River 2004 Hydrograph, Precipitation and Sampling Information

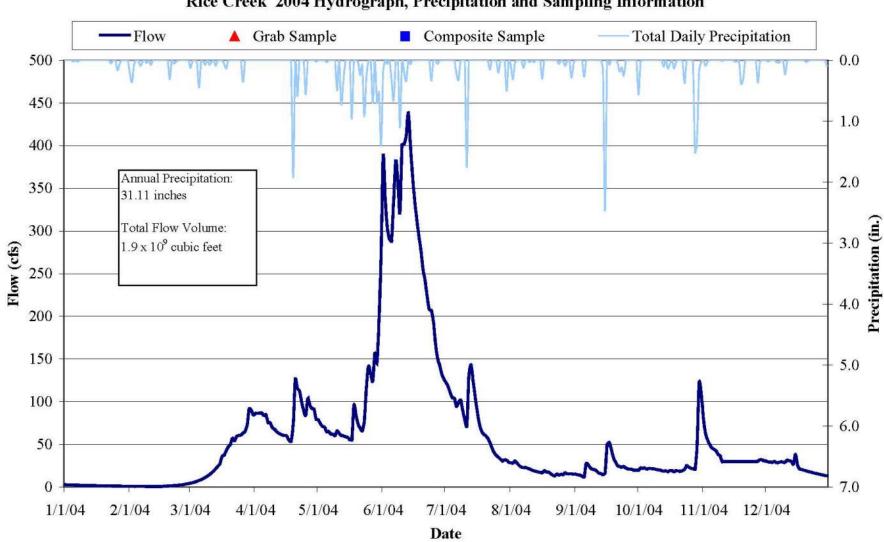



Eagle Creek 2004 Hydrograph, Precipitation and Sampling Information

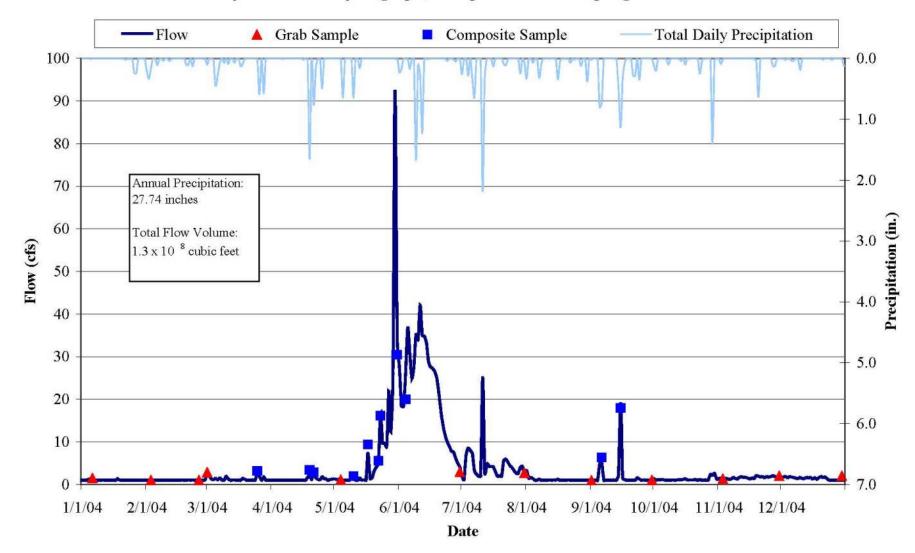



Elm Creek 2004 Hydrograph, Precipitation and Sampling Information

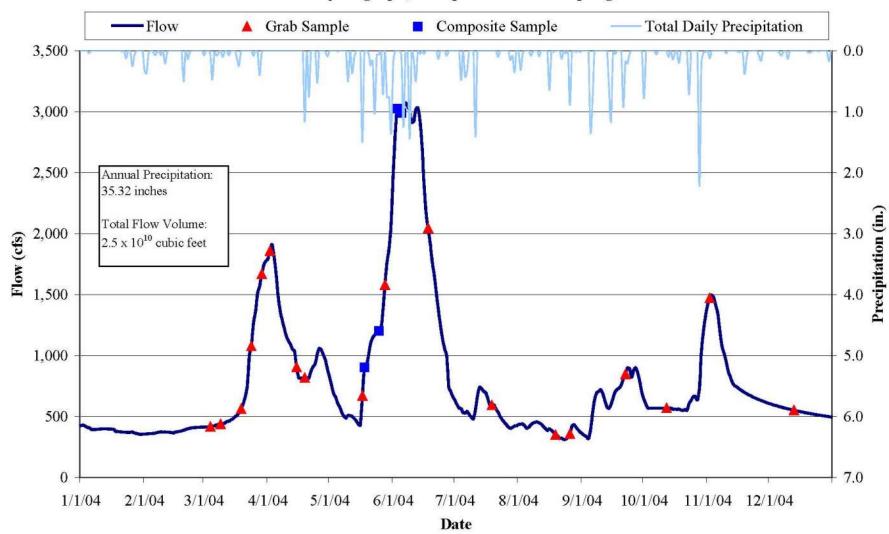



Fish Creek 2004 Hydrograph, Precipitation and Sampling Information

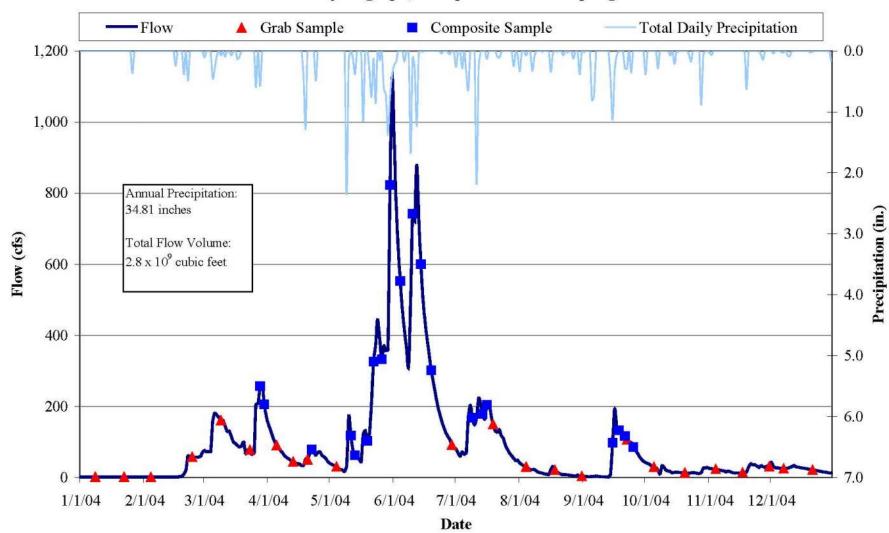



Minnehaha Creek 2004 Hydrograph, Precipitation and Sampling Information

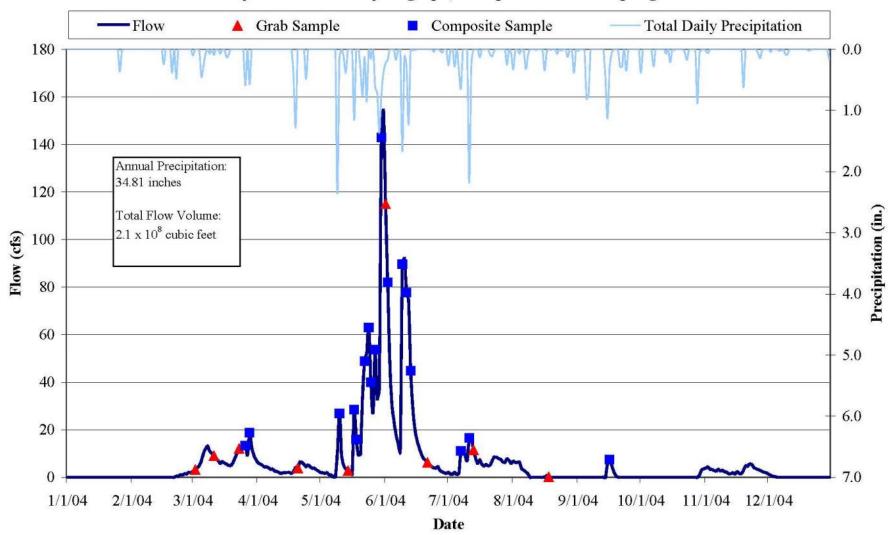



Nine Mile Creek 2004 Hydrograph, Precipitation and Sampling Information

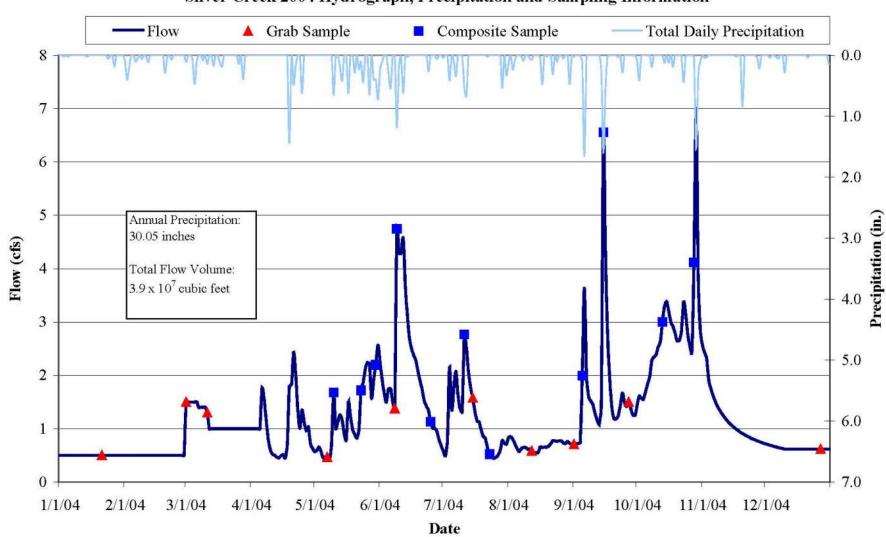



Rice Creek 2004 Hydrograph, Precipitation and Sampling Information

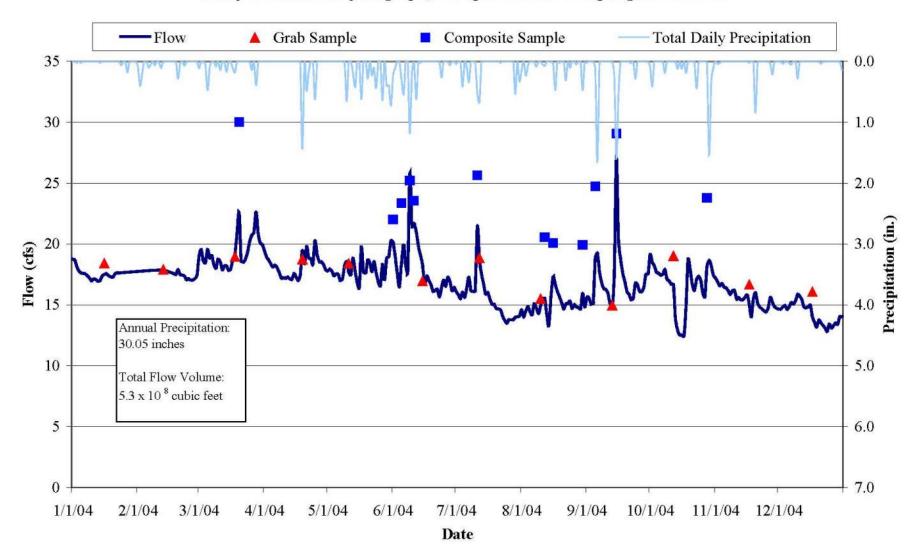



Riley Creek 2004 Hydrograph, Precipitation and Sampling Information

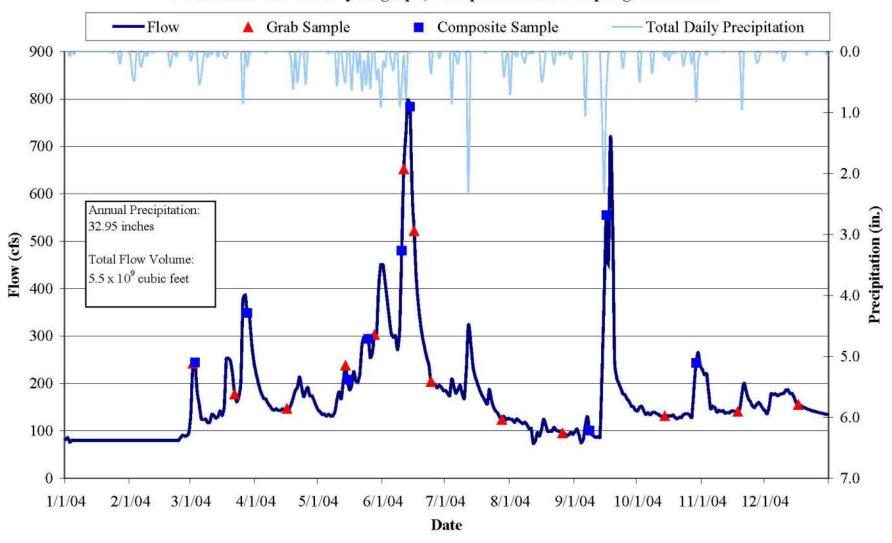



Rum River 2004 Hydrograph, Precipitation and Sampling Information

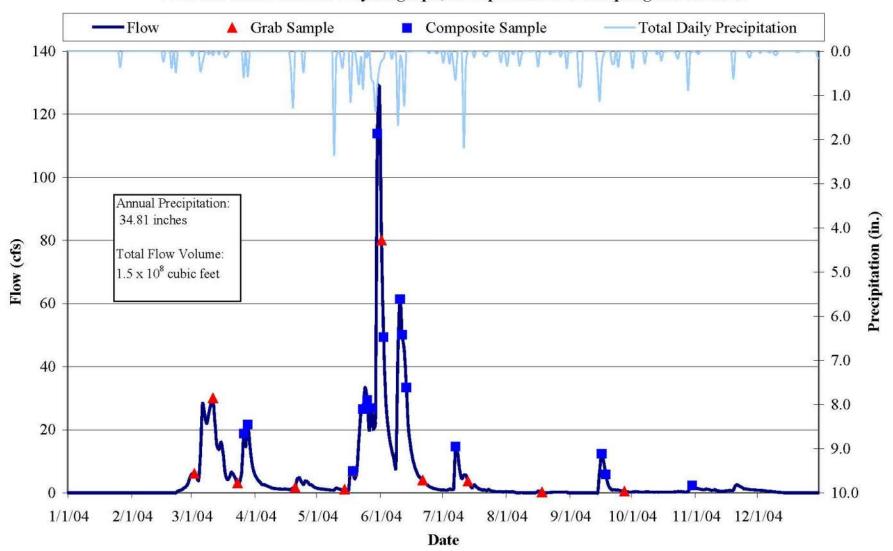



Sand Creek 2004 Hydrograph, Precipitation and Sampling Information

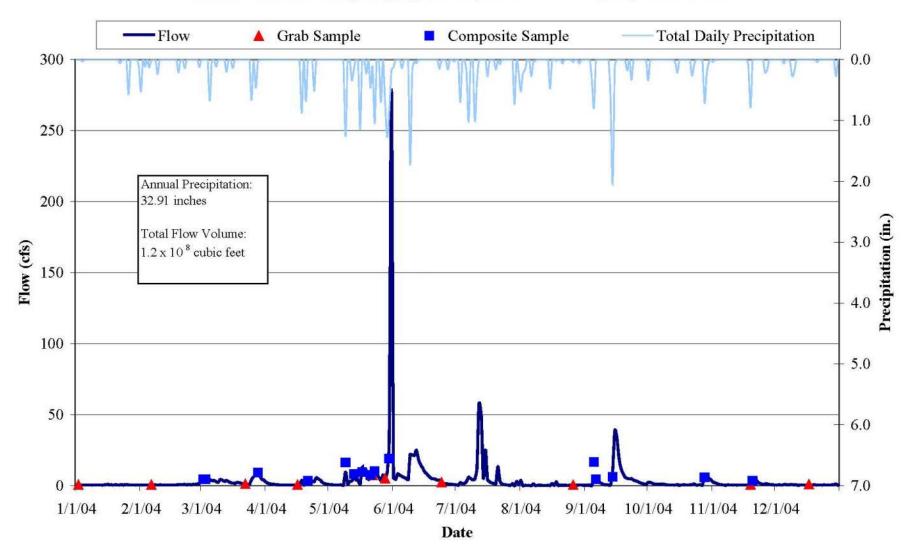



Scott County Ditch 10 2004 Hydrograph, Precipitation and Sampling Information




Silver Creek 2004 Hydrograph, Precipitation and Sampling Information




Valley Creek 2004 Hydrograph, Precipitation and Sampling Information



Vermillion River 2004 Hydrograph, Precipitation and Sampling Information



West Raven Stream 2004 Hydrograph, Precipitation and Sampling Information



## Willow Creek 2004 Hydrograph, Precipitation and Sampling Information

# **APPENDIX B: SUMMARY OF 2004 MONITORING DATA**

### Alkalinity (mg/l as CaCo3)

| Site                    | N   | Mean | Min | Max |
|-------------------------|-----|------|-----|-----|
| Bassett Creek           | 26  | 172  | 107 | 345 |
| Battle Creek            | 45  | 118  | 49  | 251 |
| Bevens Creek - Lower    | 36  | 237  | 115 | 397 |
| Bevens Creek - Upper    | 22  | 203  | 69  | 396 |
| Bluff Creek             | 27  | 207  | 87  | 323 |
| Browns Creek            | 23  | 148  | 93  | 195 |
| Cannon River            | 21  | 202  | 135 | 282 |
| Carnelian Marine Outlet | 17  | 104  | 92  | 120 |
| Carver Creek            | 26  | 240  | 179 | 342 |
| Credit River            | 23  | 223  | 133 | 347 |
| Crow River              | 19  | 232  | 177 | 341 |
| Eagle Creek             | 22  | 255  | 238 | 270 |
| Elm Creek               | n/a | n/a  | n/a | n/a |
| Fish Creek              | 24  | 146  | 99  | 251 |
| Minnehaha Creek         | 26  | 131  | 102 | 177 |
| Nine Mile Creek         | 34  | 130  | 37  | 275 |
| Rice Creek              | n/a | n/a  | n/a | n/a |
| Riley Creek             | 23  | 192  | 90  | 295 |
| Rum River               | 21  | 122  | 78  | 160 |
| Sand Creek              | 44  | 230  | 121 | 445 |
| Scott County Ditch 10   | 22  | 189  | 83  | 339 |
| Silver Creek            | 19  | 146  | 96  | 184 |
| South Fork Crow River   | 18  | 222  | 172 | 307 |
| Valley Creek            | 22  | 203  | 182 | 224 |
| Vermillion River        | 19  | 202  | 94  | 242 |
| West Raven Creek        | 22  | 222  | 70  | 348 |
| Willow Creek            | 25  | 140  | 38  | 360 |

### Total COD (mg/l)

| Site                    | N   | Mean | Min | Max |
|-------------------------|-----|------|-----|-----|
| Bassett Creek           | 27  | 38   | 18  | 86  |
| Battle Creek            | 47  | 36   | 16  | 121 |
| Bevens Creek - Lower    | 39  | 55   | 5   | 127 |
| Bevens Creek - Upper    | 26  | 70   | 40  | 110 |
| Bluff Creek             | 28  | 50   | 6   | 167 |
| Browns Creek            | 24  | 59   | 5   | 257 |
| Cannon River            | 22  | 66   | 15  | 374 |
| Carnelian Marine Outlet | 17  | 17   | 10  | 24  |
| Carver Creek            | 28  | 42   | 5   | 76  |
| Credit River            | 26  | 40   | 5   | 86  |
| Crow River              | 23  | 43   | 20  | 59  |
| Eagle Creek             | 24  | 14   | 5   | 56  |
| Elm Creek               | n/a | n/a  | n/a | n/a |
| Fish Creek              | 25  | 37   | 6   | 220 |
| Minnehaha Creek         | 26  | 33   | 20  | 66  |
| Nine Mile Creek         | 38  | 48   | 7   | 178 |
| Rice Creek              | n/a | n/a  | n/a | n/a |
| Riley Creek             | 24  | 45   | 6   | 117 |
| Rum River               | 22  | 36   | 16  | 66  |
| Sand Creek              | 39  | 60   | 11  | 152 |
| Scott County Ditch 10   | 25  | 60   | 28  | 157 |
| Silver Creek            | 21  | 29   | 5   | 187 |
| South Fork Crow River   | 21  | 48   | 28  | 71  |
| Valley Creek            | 24  | 12   | 5   | 25  |
| Vermillion River        | 18  | 34   | 7   | 121 |
| West Raven Creek        | 25  | 60   | 28  | 202 |
| Willow Creek            | 24  | 38   | 13  | 150 |

| Chloride (mg/l)         |     |      |     |      |
|-------------------------|-----|------|-----|------|
| Site                    | N   | Mean | Min | Max  |
| Bassett Creek           | 24  | 153  | 63  | 481  |
| Battle Creek            | 44  | 166  | 38  | 1285 |
| Bevens Creek - Lower    | 36  | 42   | 19  | 94   |
| Bevens Creek - Upper    | 24  | 46   | 19  | 92   |
| Bluff Creek             | 25  | 65   | 34  | 118  |
| Browns Creek            | 24  | 17   | 11  | 27   |
| Cannon River            | 21  | 30   | 19  | 58   |
| Carnelian Marine Outlet | 17  | 10   | 9   | 11   |
| Carver Creek            | 27  | 41   | 25  | 70   |
| Credit River            | 24  | 49   | 28  | 83   |
| Crow River              | 22  | 41   | 17  | 123  |
| Eagle Creek             | 21  | 20   | 18  | 23   |
| Elm Creek               | n/a | n/a  | n/a | n/a  |
| Fish Creek              | 24  | 110  | 41  | 155  |
| Minnehaha Creek         | 26  | 107  | 46  | 259  |
| Nine Mile Creek         | 35  | 94   | 12  | 469  |
| Rice Creek              | n/a | n/a  | n/a | n/a  |
| Riley Creek             | 24  | 52   | 14  | 143  |
| Rum River               | 21  | 14   | 7   | 23   |
| Sand Creek              | 39  | 59   | 24  | 217  |
| Scott County Ditch 10   | 22  | 24   | 14  | 33   |
| Silver Creek            | 19  | 17   | 15  | 22   |
| South Fork Crow River   | 18  | 51   | 23  | 123  |
| Valley Creek            | 22  | 19   | 17  | 20   |
| Vermillion River        | 18  | 69   | 28  | 91   |
| West Raven Creek        | 22  | 25   | 12  | 37   |
| Willow Creek            | 25  | 109  | 5   | 213  |

### Chloride (mg/l)

| Site                    | N   | Mean | Min | Max |
|-------------------------|-----|------|-----|-----|
| Bassett Creek           | 24  | 35   | 20  | 79  |
| Battle Creek            | 45  | 13   | 4   | 34  |
| Bevens Creek - Lower    | 34  | 64   | 2   | 127 |
| Bevens Creek - Upper    | 22  | 46   | 11  | 127 |
| Bluff Creek             | 24  | 23   | 9   | 37  |
| Browns Creek            | 23  | 7    | 1   | 11  |
| Cannon River            | 21  | 40   | 25  | 52  |
| Carnelian Marine Outlet | 17  | 2    | 1   | 9   |
| Carver Creek            | 27  | 45   | 13  | 68  |
| Credit River            | 19  | 23   | 10  | 34  |
| Crow River              | 20  | 53   | 23  | 82  |
| Eagle Creek             | 22  | 22   | 16  | 28  |
| Elm Creek               | n/a | n/a  | n/a | n/a |
| Fish Creek              | 24  | 20   | 12  | 35  |
| Minnehaha Creek         | 26  | 13   | 5   | 47  |
| Nine Mile Creek         | 27  | 15   | 1   | 33  |
| Rice Creek              | n/a | n/a  | n/a | n/a |
| Riley Creek             | 24  | 19   | 4   | 29  |
| Rum River               | 21  | 10   | 1   | 17  |
| Sand Creek              | 37  | 57   | 32  | 105 |
| Scott County Ditch 10   | 21  | 64   | 18  | 328 |
| Silver Creek            | 19  | 6    | 1   | 11  |
| South Fork Crow River   | 20  | 85   | 62  | 135 |
| Valley Creek            | 22  | 17   | 14  | 24  |
| Vermillion River        | 18  | 36   | 23  | 45  |
| West Raven Creek        | 22  | 53   | 12  | 318 |
| Willow Creek            | 25  | 87   | 8   | 349 |

#### Sulfate (mg/l)

| Site                    | N  | Mean | Min | Max |
|-------------------------|----|------|-----|-----|
| Bassett Creek           | 27 | 1.4  | 0.8 | 3.1 |
| Battle Creek            | 47 | 1.1  | 0.5 | 4.3 |
| Bevens Creek - Lower    | 41 | 2.0  | 0.2 | 5.6 |
| Bevens Creek - Upper    | 27 | 2.5  | 1.2 | 5.4 |
| Bluff Creek             | 28 | 1.5  | 0.1 | 5.6 |
| Browns Creek            | 24 | 1.5  | 0.2 | 6.9 |
| Cannon River            | 23 | 1.8  | 0.5 | 5.7 |
| Carnelian Marine Outlet | 17 | 0.4  | 0.3 | 0.6 |
| Carver Creek            | 28 | 1.5  | 0.2 | 3.4 |
| Credit River            | 27 | 1.2  | 0.1 | 2.9 |
| Crow River              | 23 | 1.6  | 0.9 | 2.1 |
| Eagle Creek             | 24 | 0.4  | 0.1 | 2.7 |
| Elm Creek               | 19 | 1.2  | 0.5 | 2.4 |
| Fish Creek              | 25 | 1.0  | 0.2 | 2.2 |
| Minnehaha Creek         | 26 | 1.3  | 0.3 | 2.4 |
| Nine Mile Creek         | 38 | 1.3  | 0.2 | 4.8 |
| Rice Creek              | 9  | 1.6  | 0.9 | 3.2 |
| Riley Creek             | 24 | 1.2  | 0.1 | 3.2 |
| Rum River               | 22 | 1.0  | 0.5 | 1.4 |
| Sand Creek              | 40 | 2.4  | 0.6 | 6.9 |
| Scott County Ditch 10   | 27 | 2.3  | 0.5 | 5.3 |
| Silver Creek            | 21 | 0.8  | 0.1 | 4.9 |
| South Fork Crow River   | 21 | 2.0  | 1.0 | 3.8 |
| Valley Creek            | 24 | 0.4  | 0.2 | 0.9 |
| Vermillion River        | 19 | 1.3  | 0.4 | 5.6 |
| West Raven Creek        | 27 | 2.1  | 0.7 | 4.2 |
| Willow Creek            | 25 | 1.2  | 0.2 | 4.1 |

#### Total Kjeldahl nitrogen (mg/l as N)

| Site                    | N   | Mean  | Min  | Max   |
|-------------------------|-----|-------|------|-------|
| Bassett Creek           | 27  | 0.38  | 0.03 | 0.79  |
| Battle Creek            | 47  | 0.60  | 0.07 | 7.56  |
| Bevens Creek - Lower    | 41  | 5.71  | 0.48 | 21.20 |
| Bevens Creek - Upper    | 27  | 6.84  | 0.29 | 16.20 |
| Bluff Creek             | 28  | 1.47  | 0.15 | 17.30 |
| Browns Creek            | 24  | 0.67  | 0.08 | 1.65  |
| Cannon River            | 23  | 5.00  | 2.14 | 8.65  |
| Carnelian Marine Outlet | 17  | 0.15  | 0.03 | 0.40  |
| Carver Creek            | 28  | 1.89  | 0.49 | 5.17  |
| Credit River            | 27  | 0.92  | 0.03 | 2.50  |
| Crow River              | 23  | 2.87  | 0.03 | 6.67  |
| Eagle Creek             | 24  | 0.23  | 0.06 | 0.89  |
| Elm Creek               | n/a | n/a   | n/a  | n/a   |
| Fish Creek              | 25  | 0.91  | 0.12 | 1.96  |
| Minnehaha Creek         | 26  | 0.33  | 0.03 | 1.29  |
| Nine Mile Creek         | 38  | 0.84  | 0.10 | 11.00 |
| Rice Creek              | n/a | n/a   | n/a  | n/a   |
| Riley Creek             | 24  | 1.23  | 0.03 | 2.39  |
| Rum River               | 22  | 0.49  | 0.03 | 0.89  |
| Sand Creek              | 40  | 3.52  | 0.16 | 10.60 |
| Scott County Ditch 10   | 27  | 15.04 | 1.77 | 26.50 |
| Silver Creek            | 21  | 0.77  | 0.03 | 1.57  |
| South Fork Crow River   | 21  | 6.32  | 0.84 | 14.80 |
| Valley Creek            | 24  | 4.34  | 3.41 | 5.07  |
| Vermillion River        | 19  | 6.01  | 2.49 | 9.94  |
| West Raven Creek        | 27  | 9.38  | 2.54 | 17.90 |
| Willow Creek            | 25  | 0.46  | 0.09 | 1.32  |

### Total Nitrate (mg/l as N)

| Site                    | N   | N Mean |      | Max  |  |
|-------------------------|-----|--------|------|------|--|
| Bassett Creek           | 27  | 0.02   | 0.02 | 0.07 |  |
| Battle Creek            | 47  | 0.03   | 0.02 | 0.19 |  |
| Bevens Creek - Lower    | 41  | 0.07   | 0.02 | 0.31 |  |
| Bevens Creek - Upper    | 27  | 0.08   | 0.02 | 0.31 |  |
| Bluff Creek             | 28  | 0.03   | 0.02 | 0.15 |  |
| Browns Creek            | 24  | 0.02   | 0.02 | 0.05 |  |
| Cannon River            | 23  | 0.07   | 0.02 | 0.13 |  |
| Carnelian Marine Outlet | 17  | 0.02   | 0.02 | 0.02 |  |
| Carver Creek            | 28  | 0.05   | 0.02 | 0.16 |  |
| Credit River            | 27  | 0.04   | 0.02 | 0.22 |  |
| Crow River              | 23  | 0.03   | 0.02 | 0.07 |  |
| Eagle Creek             | 24  | 0.02   | 0.02 | 0.03 |  |
| Elm Creek               | n/a | n/a    | n/a  | n/a  |  |
| Fish Creek              | 25  | 0.03   | 0.02 | 0.13 |  |
| Minnehaha Creek         | 26  | 0.02   | 0.02 | 0.04 |  |
| Nine Mile Creek         | 38  | 0.03   | 0.02 | 0.34 |  |
| Rice Creek              | n/a | n/a    | n/a  | n/a  |  |
| Riley Creek             | 24  | 0.03   | 0.02 | 0.07 |  |
| Rum River               | 22  | 0.02   | 0.02 | 0.03 |  |
| Sand Creek              | 40  | 0.05   | 0.02 | 0.27 |  |
| Scott County Ditch 10   | 27  | 0.10   | 0.04 | 0.28 |  |
| Silver Creek            | 21  | 0.02   | 0.02 | 0.06 |  |
| South Fork Crow River   | 21  | 0.09   | 0.02 | 0.39 |  |
| Valley Creek            | 24  | 0.05   | 0.02 | 0.33 |  |
| Vermillion River        | 19  | 0.05   | 0.02 | 0.15 |  |
| West Raven Creek        | 27  | 0.09   | 0.02 | 0.21 |  |
| Willow Creek            | 25  | 0.02   | 0.02 | 0.13 |  |

### Total nitrite (mg/l as N)

## Dissolved orthophosphorus (ug/l as P)

| Site                    | N   | Mean | Min  | Max  |
|-------------------------|-----|------|------|------|
| Bassett Creek           | 27  | 0.03 | 0.00 | 0.07 |
| Battle Creek            | 47  | 0.03 | 0.01 | 0.13 |
| Bevens Creek - Lower    | 41  | 0.24 | 0.00 | 1.12 |
| Bevens Creek - Upper    | 27  | 0.37 | 0.16 | 1.34 |
| Bluff Creek             | 28  | 0.10 | 0.01 | 0.29 |
| Browns Creek            | 24  | 0.06 | 0.02 | 0.13 |
| Cannon River            | 23  | 0.14 | 0.02 | 0.44 |
| Carnelian Marine Outlet | 17  | 0.01 | 0.00 | 0.17 |
| Carver Creek            | 28  | 0.04 | 0.00 | 0.31 |
| Credit River            | 27  | 0.09 | 0.01 | 0.33 |
| Crow River              | 23  | 0.15 | 0.00 | 0.56 |
| Eagle Creek             | 24  | 0.01 | 0.01 | 0.02 |
| Elm Creek               | n/a | n/a  | n/a  | n/a  |
| Fish Creek              | 25  | 0.08 | 0.01 | 0.17 |
| Minnehaha Creek         | 26  | 0.02 | 0.00 | 0.07 |
| Nine Mile Creek         | 38  | 0.02 | 0.00 | 0.09 |
| Rice Creek              | 9   | 0.02 | 0.01 | 0.04 |
| Riley Creek             | 24  | 0.05 | 0.01 | 0.36 |
| Rum River               | 22  | 0.03 | 0.01 | 0.05 |
| Sand Creek              | 40  | 0.21 | 0.03 | 0.63 |
| Scott County Ditch 10   | 27  | 0.19 | 0.01 | 0.66 |
| Silver Creek            | 21  | 0.03 | 0.00 | 0.05 |
| South Fork Crow River   | 21  | 0.31 | 0.09 | 1.46 |
| Valley Creek            | 24  | 0.01 | 0.01 | 0.03 |
| Vermillion River        | 19  | 0.61 | 0.45 | 0.78 |
| West Raven Creek        | 27  | 0.25 | 0.11 | 0.44 |
| Willow Creek            | 25  | 0.03 | 0.00 | 0.15 |

| Site                    | Ν  | Mean | Min  | Max  |
|-------------------------|----|------|------|------|
| Bassett Creek           | 27 | 0.16 | 0.04 | 0.49 |
| Battle Creek            | 47 | 0.21 | 0.03 | 1.66 |
| Bevens Creek - Lower    | 41 | 0.45 | 0.01 | 1.53 |
| Bevens Creek - Upper    | 27 | 0.58 | 0.18 | 1.87 |
| Bluff Creek             | 28 | 0.45 | 0.02 | 2.24 |
| Browns Creek            | 24 | 0.27 | 0.05 | 1.15 |
| Cannon River            | 23 | 0.47 | 0.06 | 1.83 |
| Carnelian Marine Outlet | 17 | 0.02 | 0.01 | 0.04 |
| Carver Creek            | 28 | 0.14 | 0.01 | 0.39 |
| Credit River            | 27 | 0.26 | 0.01 | 0.56 |
| Crow River              | 23 | 0.31 | 0.11 | 0.63 |
| Eagle Creek             | 24 | 0.08 | 0.01 | 0.71 |
| Elm Creek               | 19 | 0.16 | 0.04 | 0.30 |
| Fish Creek              | 25 | 0.18 | 0.01 | 0.51 |
| Minnehaha Creek         | 26 | 0.11 | 0.05 | 0.29 |
| Nine Mile Creek         | 38 | 0.19 | 0.01 | 0.78 |
| Rice Creek              | 10 | 0.17 | 0.07 | 0.48 |
| Riley Creek             | 24 | 0.32 | 0.03 | 0.87 |
| Rum River               | 22 | 0.12 | 0.04 | 0.19 |
| Sand Creek              | 40 | 0.52 | 0.10 | 1.98 |
| Scott County Ditch 10   | 27 | 0.40 | 0.07 | 1.24 |
| Silver Creek            | 21 | 0.17 | 0.01 | 1.17 |
| South Fork Crow River   | 21 | 0.52 | 0.15 | 1.76 |
| Valley Creek            | 24 | 0.09 | 0.01 | 0.88 |
| Vermillion River        | 19 | 0.77 | 0.41 | 2.21 |
| West Raven Creek        | 27 | 0.46 | 0.09 | 1.31 |
| Willow Creek            | 25 | 0.15 | 0.01 | 0.64 |

#### Total phosphorus (ug/l as P)

| Site                    | N   | Mean | Min  | Max  |
|-------------------------|-----|------|------|------|
| Bassett Creek           | 27  | 0.04 | 0.01 | 0.14 |
| Battle Creek            | 47  | 0.08 | 0.01 | 1.38 |
| Bevens Creek - Lower    | 41  | 0.25 | 0.01 | 1.32 |
| Bevens Creek - Upper    | 27  | 0.39 | 0.16 | 1.31 |
| Bluff Creek             | 28  | 0.14 | 0.01 | 0.69 |
| Browns Creek            | 24  | 0.07 | 0.03 | 0.26 |
| Cannon River            | 23  | 0.15 | 0.01 | 0.50 |
| Carnelian Marine Outlet | 17  | 0.01 | 0.00 | 0.02 |
| Carver Creek            | 28  | 0.07 | 0.01 | 0.33 |
| Credit River            | 27  | 0.10 | 0.01 | 0.34 |
| Crow River              | 23  | 0.18 | 0.01 | 0.55 |
| Eagle Creek             | 24  | 0.01 | 0.01 | 0.04 |
| Elm Creek               | 19  | 0.10 | 0.02 | 0.26 |
| Fish Creek              | 25  | 0.11 | 0.02 | 0.29 |
| Minnehaha Creek         | 26  | 0.05 | 0.01 | 0.19 |
| Nine Mile Creek         | 38  | 0.05 | 0.01 | 0.28 |
| Rice Creek              | n/a | n/a  | n/a  | n/a  |
| Riley Creek             | 24  | 0.06 | 0.01 | 0.38 |
| Rum River               | 22  | 0.05 | 0.02 | 0.10 |
| Sand Creek              | 40  | 0.23 | 0.06 | 0.68 |
| Scott County Ditch 10   | 27  | 0.28 | 0.06 | 1.30 |
| Silver Creek            | 21  | 0.03 | 0.01 | 0.07 |
| South Fork Crow River   | 21  | 0.34 | 0.11 | 1.67 |
| Valley Creek            | 24  | 0.05 | 0.01 | 0.82 |
| Vermillion River        | 19  | 0.53 | 0.17 | 0.86 |
| West Raven Creek        | 27  | 0.35 | 0.08 | 1.05 |
| Willow Creek            | 25  | 0.04 | 0.01 | 0.16 |

Total dissolved phosphorus (ug/l as P)

| Site                    | N  | Mean | Min | Max  |
|-------------------------|----|------|-----|------|
| Bassett Creek           | 27 | 57   | 3   | 314  |
| Battle Creek            | 47 | 50   | 1   | 324  |
| Bevens Creek - Lower    | 41 | 218  | 1   | 1030 |
| Bevens Creek - Upper    | 27 | 196  | 5   | 624  |
| Bluff Creek             | 28 | 159  | 1   | 860  |
| Browns Creek            | 24 | 78   | 1   | 216  |
| Cannon River            | 23 | 190  | 2   | 1470 |
| Carnelian Marine Outlet | 17 | 2    | 1   | 8    |
| Carver Creek            | 28 | 52   | 2   | 320  |
| Credit River            | 27 | 50   | 1   | 226  |
| Crow River              | 23 | 59   | 3   | 176  |
| Eagle Creek             | 24 | 20   | 1   | 162  |
| Elm Creek               | 19 | 9    | 5   | 21   |
| Fish Creek              | 25 | 39   | 1   | 160  |
| Minnehaha Creek         | 26 | 20   | 1   | 115  |
| Nine Mile Creek         | 38 | 105  | 1   | 712  |
| Rice Creek              | 8  | 81   | 9   | 413  |
| Riley Creek             | 24 | 329  | 1   | 2690 |
| Rum River               | 22 | 20   | 2   | 42   |
| Sand Creek              | 40 | 178  | 2   | 1220 |
| Scott County Ditch 10   | 27 | 85   | 8   | 556  |
| Silver Creek            | 21 | 74   | 1   | 735  |
| South Fork Crow River   | 21 | 49   | 1   | 136  |
| Valley Creek            | 24 | 27   | 4   | 169  |
| Vermillion River        | 19 | 62   | 2   | 348  |
| West Raven Creek        | 27 | 107  | 1   | 1080 |
| Willow Creek            | 25 | 57   | 1   | 482  |

### Total suspended solids (mg/l)

| Site                    | Ν  | Mean | Min | Max |
|-------------------------|----|------|-----|-----|
| Bassett Creek           | 27 | 12   | 1   | 56  |
| Battle Creek            | 47 | 11   | 1   | 70  |
| Bevens Creek - Lower    | 41 | 24   | 1   | 100 |
| Bevens Creek - Upper    | 27 | 21   | 1   | 54  |
| Bluff Creek             | 28 | 12   | 1   | 56  |
| Browns Creek            | 24 | 28   | 1   | 88  |
| Cannon River            | 23 | 28   | 1   | 230 |
| Carnelian Marine Outlet | 17 | 1    | 1   | 3   |
| Carver Creek            | 28 | 8    | 1   | 32  |
| Credit River            | 27 | 30   | 1   | 384 |
| Crow River              | 23 | 12   | 1   | 29  |
| Eagle Creek             | 24 | 6    | 1   | 50  |
| Elm Creek               | 12 | 6    | 5   | 10  |
| Fish Creek              | 25 | 7    | 1   | 21  |
| Minnehaha Creek         | 26 | 7    | 1   | 38  |
| Nine Mile Creek         | 38 | 25   | 1   | 184 |
| Rice Creek              | 8  | 20   | 4   | 79  |
| Riley Creek             | 24 | 53   | 1   | 604 |
| Rum River               | 22 | 6    | 1   | 15  |
| Sand Creek              | 40 | 28   | 1   | 128 |
| Scott County Ditch 10   | 27 | 15   | 2   | 104 |
| Silver Creek            | 21 | 17   | 1   | 145 |
| South Fork Crow River   | 21 | 11   | 1   | 25  |
| Valley Creek            | 24 | 6    | 1   | 28  |
| Vermillion River        | 19 | 14   | 1   | 67  |
| West Raven Creek        | 27 | 15   | 1   | 136 |
| Willow Creek            | 25 | 14   | 1   | 117 |

#### Total volatile suspended solids (mg/l)

## Turbidity (ntu)

| Site                    | N   | Mean | Min | Max |
|-------------------------|-----|------|-----|-----|
| Bassett Creek           | 26  | 13   | 2   | 50  |
| Battle Creek            | 46  | 9    | 2   | 34  |
| Bevens Creek - Lower    | 38  | 36   | 1   | 200 |
| Bevens Creek - Upper    | 26  | 38   | 3   | 140 |
| Bluff Creek             | 25  | 23   | 1   | 95  |
| Browns Creek            | 24  | 12   | 3   | 55  |
| Cannon River            | 13  | 12   | 2   | 55  |
| Carnelian Marine Outlet | 16  | 1    | 1   | 2   |
| Carver Creek            | 27  | 12   | 2   | 50  |
| Credit River            | 26  | 13   | 1   | 37  |
| Crow River              | 19  | 14   | 4   | 29  |
| Eagle Creek             | 20  | 6    | 2   | 33  |
| Elm Creek               | n/a | n/a  | n/a | n/a |
| Fish Creek              | 24  | 13   | 1   | 50  |
| Minnehaha Creek         | 24  | 5    | 2   | 17  |
| Nine Mile Creek         | 37  | 19   | 1   | 85  |
| Rice Creek              | n/a | n/a  | n/a | n/a |
| Riley Creek             | 16  | 28   | 2   | 150 |
| Rum River               | 22  | 6    | 3   | 9   |
| Sand Creek              | 39  | 30   | 2   | 170 |
| Scott County Ditch 10   | 25  | 30   | 1   | 160 |
| Silver Creek            | 21  | 11   | 1   | 100 |
| South Fork Crow River   | 20  | 16   | 4   | 39  |
| Valley Creek            | 15  | 2    | 1   | 5   |
| Vermillion River        | 18  | 9    | 2   | 29  |
| West Raven Creek        | 24  | 26   | 2   | 310 |
| Willow Creek            | 23  | 8    | 1   | 50  |

# APPENDIX C: 2004 MACROINVERTEBRATE DATA

| Class       | Order         | Family         | Sub-Family     | Genus            | Common Name             | <b>Organism</b> Count |
|-------------|---------------|----------------|----------------|------------------|-------------------------|-----------------------|
| Crustacea   | Amphipoda     | Gammaridae     |                | Gammarus         | Scuds                   | 44                    |
| Insecta     | Coleoptera    | Elmidae        |                | Stenelmis        | Riffle Beetles          | 122                   |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Cryptochironomus | Midges                  | 6                     |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Micropsectra     | Midges                  | 1                     |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Polypedilum      | Midges                  | 47                    |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Rheotanytarsus   | Midges                  | 23                    |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Saetheria        | Midges                  | 41                    |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Stictochironomus | Midges                  | 2                     |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Sublettea        | Midges                  | 28                    |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Tanytarsus       | Midges                  | 3                     |
| Insecta     | Diptera       | Chironomidae   | Orthocladiinae | Chaetocladius    | Midges                  | 1                     |
| Insecta     | Diptera       | Chironomidae   | Orthocladiinae | Cricotopus       | Midges                  | 10                    |
| Insecta     | Diptera       | Chironomidae   | Orthocladiinae | Nanocladius      | Midges                  | 2                     |
| Insecta     | Diptera       | Chironomidae   | Orthocladiinae | Parametriocnemus | Midges                  | 33                    |
| Insecta     | Diptera       | Chironomidae   | Orthocladiinae | Thienemanniella  | Midges                  | 7                     |
| Insecta     | Diptera       | Chironomidae   | Tanypodinae    | Conchapelopia    | Midges                  | 27                    |
| Insecta     | Diptera       | Empididae      |                | Hemerodromia     | Aquatic Dance Flies     | 7                     |
| Insecta     | Diptera       | Simuliidae     |                | Simulium         | Black Flies             | 148                   |
| Insecta     | Diptera       | Tipulidae      |                | Tipula           | Crane Flies             | 1                     |
| Insecta     | Ephemeroptera | Baetidae       |                | Baetis           | Small Minnow Mayflies   | 501                   |
| Insecta     | Hemiptera     | Gerridae       |                | Aquarius         | Water Striders          | 2                     |
| Insecta     | Odonata       | Calopterygidae |                | Calopteryx       | Broadwinged Damselflies | 1                     |
| Insecta     | Trichoptera   | Hydropsychidae |                | Hydropsyche      | Common Netspinners      | 3                     |
| Turbellaria |               |                |                |                  | Planaria                | 244                   |

Battle Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/11/2004)

| Class      | Sub-Class   | Order         | Family           | Sub-Family     | Genus            | Common Name               | Organism Count |
|------------|-------------|---------------|------------------|----------------|------------------|---------------------------|----------------|
| Clitellata | Oligochaeta |               |                  |                |                  | Segmented Worms           | 1              |
| Insecta    |             | Coleoptera    | Dryopidae        |                | Postelichus      | Longtoed Water Beetles    | 1              |
| Insecta    | 0           | Coleoptera    | Dytiscidae       |                | Neobidessus      | Predaceous Diving Beetles | 1              |
| Insecta    |             | Coleoptera    | Elmidae          |                | Dubiraphia       | Riffle Beetles            | 1              |
| Insecta    |             | Coleoptera    | Elmidae          |                | Gonielmis        | Riffle Beetles            | 1              |
| Insecta    | 0           | Coleoptera    | Elmidae          |                | Macronychus      | Riffle Beetles            | 3              |
| Insecta    |             | Coleoptera    | Elmidae          |                | Stenelmis        | Riffle Beetles            | 31             |
| Insecta    |             | Diptera       | Athericidae      |                | Atherix          | Watersnipe Flies          | 4              |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Cryptochironomus | Midges                    | 1              |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Microtendipes    | Midges                    | 6              |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Polypedilum      | Midges                    | 186            |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Rheotanytarsus   | Midges                    | 29             |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Saetheria        | Midges                    | 3              |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Tanytarsus       | Midges                    | 1              |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Brillia          | Midges                    | 5              |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Corynoneura      | Midges                    | 1              |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Cricotopus       | Midges                    | 212            |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Eukiefferiella   | Midges                    | 1              |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Parametriocnemus | Midges                    | 16             |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Thienemanniella  | Midges                    | 8              |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Tvetenia         | Midges                    | 1              |
| Insecta    |             | Diptera       | Chironomidae     | Tanypodinae    |                  | Midges                    | 207            |
| Insecta    | 5<br>7      | Diptera       | Empididae        |                | Hemerodromia     | Aquatic Dance Flies       | 12             |
| Insecta    | 1           | Diptera       | Simuliidae       |                | Simulium         | Black Flies               | 25             |
| Insecta    |             | Diptera       | Tipulidae        |                | Dicranota        | Crane Flies               | 46             |
| Insecta    |             | Diptera       | Tipulidae        |                | Tipula           | Crane Flies               | 2              |
| Insecta    |             | Ephemeroptera | Baetidae         |                | Baetis           | Small Minnow Mayflies     | 71             |
| Insecta    |             | Ephemeroptera | Heptageniidae    |                | Stenonema        | Flatheaded Mayflies       | 62             |
| Insecta    | 0           | Ephemeroptera | Isonychiidae     |                | Isonychia        | Brushlegged Mayflies      | 3              |
| Insecta    | 5-<br>      | Ephemeroptera | Tricorythidae    |                | Tricorythodes    | Little Stout Crawlers     | 1              |
| Insecta    |             | Plecoptera    | Taeniopterygidae |                | Taeniopteryx     | Taeniopterygid Broadbacks | 7              |
| Insecta    |             | Trichoptera   | Hydropsychidae   |                |                  | Common Netspinners        | 67             |
| Insecta    |             | Trichoptera   | Hydropsychidae   |                | Cheumatopsyche   | Common Netspinners        | 38             |
| Insecta    |             | Trichoptera   | Hydropsychidae   |                | Hydropsyche      | Common Netspinners        | 291            |
| Insecta    | 9<br>       | Trichoptera   | Hydroptilidae    |                | Ochrotrichia     | Micro Caddisflies         | 17             |

Bevens Creek – Lower 2004 Macroinvertebrate Organism List (Monitoring Date 10/17/2004)

| Class      | Order           | Family         | Sub-Family     | Genus             | Common Name               | <b>Organism</b> Count |
|------------|-----------------|----------------|----------------|-------------------|---------------------------|-----------------------|
| Crustacea  | Amphipoda       | Gammaridae     |                | Gammarus          | Scuds                     | 401                   |
| Gastropoda | Ctenobranchiata | Lymnaeidae     |                | Stagnicola        | Snails                    | 1                     |
| Insecta    | Coleoptera      | Dryopidae      |                | Postelichus       | Longtoed Water Beetles    | 1                     |
| Insecta    | Coleoptera      | Dytiscidae     |                | Laccophilus       | Predaceous Diving Beetles | 1                     |
| Insecta    | Coleoptera      | Dytiscidae     |                | Uvarus            | Predaceous Diving Beetles | 1                     |
| Insecta    | Coleoptera      | Elmidae        |                | Optioservus       | Riffle Beetles            | 1                     |
| Insecta    | Collembola      | Isotomidae     |                |                   | Springtail                | 4                     |
| Insecta    | Diptera         | Chironomidae   | Chironominae   | Paracladopelma    | Midges                    | 1                     |
| Insecta    | Diptera         | Chironomidae   | Orthocladiinae | Brillia           | Midges                    | 1                     |
| Insecta    | Diptera         | Chironomidae   | Orthocladiinae | Corynoneura       | Midges                    | 147                   |
| Insecta    | Diptera         | Chironomidae   | Orthocladiinae | Cricotopus        | Midges                    | 1                     |
| Insecta    | Diptera         | Chironomidae   | Orthocladiinae | Eukiefferiella    | Midges                    | 30                    |
| Insecta    | Diptera         | Chironomidae   | Orthocladiinae | Parametriocnemus  | Midges                    | 10                    |
| Insecta    | Diptera         | Chironomidae   | Orthocladiinae | Paraphaenocladius | Midges                    | 2                     |
| Insecta    | Diptera         | Chironomidae   | Orthocladiinae | Tvetenia          | Midges                    | 5                     |
| Insecta    | Diptera         | Chironomidae   | Tanypodinae    |                   | Midges                    | 7                     |
| Insecta    | Diptera         | Empididae      |                | Clinocera         | Aquatic Dance Flies       | 1                     |
| Insecta    | Diptera         | Muscidae       |                | Limnophora        |                           | 2                     |
| Insecta    | Diptera         | Psychodidae    |                | Psychoda          | Moth Flies                | 1                     |
| Insecta    | Diptera         | Simuliidae     |                | Simulium          | Black Flies               | 4                     |
| Insecta    | Diptera         | Tipulidae      |                | Dicranota         | Crane Flies               | 3                     |
| Insecta    | Diptera         | Tipulidae      |                | Tipula            | Crane Flies               | 4                     |
| Insecta    | Ephemeroptera   | Baetidae       |                | Baetis            | Small Minnow Mayflies     | 53                    |
| Insecta    | Ephemeroptera   | Heptageniidae  |                | Stenonema         | Flatheaded Mayflies       | 1                     |
| Insecta    | Hemiptera       | Corixidae      | 2              | Sigara            | Water Boatman             | 1                     |
| Insecta    | Plecoptera      | Capniidae      |                | Allocapnia        | Slender Winter Stoneflies | 18                    |
| Insecta    | Plecoptera      | Nemouridae     |                |                   | Nemourid Broadbacks       | 2                     |
| Insecta    | Trichoptera     | Hydropsychidae |                | Cheumatopsyche    | Common Netspinners        | 1                     |
| Insecta    | Trichoptera     | Hydropsychidae |                | Hydropsyche       | Common Netspinners        | 1                     |

Bluff Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/17/2004)

| Class      | Order      | Family        | Sub-Family     | Genus                                    | Common Name               | Organism Count |
|------------|------------|---------------|----------------|------------------------------------------|---------------------------|----------------|
| Crustacea  | Amphipoda  | Gammaridae    |                | Gammarus                                 | Scuds                     | 15             |
| Crustacea  | Isopoda    | Asellidae     |                | Asellus                                  | Aquatic Sowbug            | 7              |
| Gastropoda | Pulmonata  | Physidae      |                | Physella                                 | Snails                    | 9              |
| Insecta    | Coleoptera | Dytiscidae    |                | Laccophilus                              | Predaceous Diving Beetles | 7              |
| Insecta    | Coleoptera | Dytiscidae    |                | Neobidessus                              | Predaceous Diving Beetles | 10             |
| Insecta    | Coleoptera | Elmidae       |                | Macronychus                              | Riffle Beetles            | 3              |
| Insecta    | Coleoptera | Elmidae       |                | Optioservus                              | Riffle Beetles            | 134            |
| Insecta    | Coleoptera | Elmidae       |                | Stenelmis                                | Riffle Beetles            | 31             |
| Insecta    | Coleoptera | Hydrophilidae |                | Tropisternus                             | Water Scavenger Beetles   | 2              |
| Insecta    | Diptera    | Chironomidae  | Chironominae   | Polypedilum                              | Midges                    | 1              |
| Insecta    | Diptera    | Chironomidae  | Diamesinae     | Diamesa                                  | Midges                    | 3              |
| Insecta    | Diptera    | Chironomidae  | Diamesinae     | Pagastia                                 | Midges                    | 1              |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | an a | Midges                    | 7              |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | Brillia                                  | Midges                    | 6              |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | Corynoneura                              | Midges                    | 16             |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | Eukiefferiella                           | Midges                    | 3              |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | Nanocladius                              | Midges                    | 4              |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | Parametriocnemus                         | Midges                    | 1              |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | Stilocladius                             | Midges                    | 4              |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | Thienemanniella                          | Midges                    | 4              |
| Insecta    | Diptera    | Chironomidae  | Orthocladiinae | Tvetenia                                 | Midges                    | 2              |
| Insecta    | Diptera    | Chironomidae  | Prodiamesinae  | Odontomesa                               | Midges                    | 16             |
| Insecta    | Diptera    | Chironomidae  | Prodiamesinae  | Prodiamesa                               | Midges                    | 9              |
| Insecta    | Diptera    | Chironomidae  | Tanypodinae    |                                          | Midges                    | 5              |
| Insecta    | Diptera    | Dixidae       |                | Dixa                                     | Dixid Midges              | 4              |
| Insecta    | Diptera    | Empididae     |                | Hemerodromia                             | Aquatic Dance Flies       | 4              |
| Insecta    | Diptera    | Simuliidae    |                | Simulium                                 | Black Flies               | 3              |
| Insecta    | Diptera    | Tipulidae     |                | Antocha                                  | Crane Flies               | 3              |
| Insecta    | Diptera    | Tipulidae     |                | Dicranota                                | Crane Flies               | 20             |
| Insecta    | Diptera    | Tipulidae     |                | Hexatoma                                 | Crane Flies               | 1              |

Browns Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/7/2004)

| Insecta | Diptera       | Tipulidae        |                | Tipula         | Crane Flies                | 3   |
|---------|---------------|------------------|----------------|----------------|----------------------------|-----|
| Insecta | Ephemeroptera | Baetidae         | 1-<br>         | Baetis         | Small Minnow Mayflies      | 283 |
| Insecta | Ephemeroptera | Heptageniidae    |                | Stenonema      | Flatheaded Mayflies        | 18  |
| Insecta | Hemiptera     | Belostomatidae   | Belostomatinae |                | Giant Water Bugs           | 3   |
| Insecta | Hemiptera     | Corixidae        |                | Hesperocorixa  | Water Boatman              | 1   |
| Insecta | Plecoptera    | Capniidae        |                | Allocapnia     | Slender Winter Stoneflies  | 32  |
| Insecta | Plecoptera    | Perlodidae       |                |                | Perlodidae                 | 45  |
| Insecta | Trichoptera   | Brachycentridae  |                | Brachycentrus  | Humpless Case Makers       | 37  |
| Insecta | Trichoptera   | Glossosomatidae  |                | Glossosoma     | Saddlecase Makers          | 29  |
| Insecta | Trichoptera   | Hydropsychidae   |                |                | Common Netspinners         | 4   |
| Insecta | Trichoptera   | Hydropsychidae   |                | Cheumatopsyche | Common Netspinners         | 16  |
| Insecta | Trichoptera   | Hydropsychidae   |                | Hydropsyche    | Common Netspinners         | 7   |
| Insecta | Trichoptera   | Lepidostomatidae |                | Lepidostoma    | Lepidostomatid Case Makers | 13  |
| Insecta | Trichoptera   | Limnephilidae    |                | Hesperophylax  | Northern Case Makers       | 30  |
| Insecta | Trichoptera   | Philopotamidae   |                | Chimarra       | Fingernet Caddisflies      | 2   |

| Class      | Sub-Class   | Order      | Family          | Sub-Family     | Genus            | Common Name               | Organism<br>Count |
|------------|-------------|------------|-----------------|----------------|------------------|---------------------------|-------------------|
| Clitellata | Oligochaeta |            |                 |                |                  | Segmented Worms           | 8                 |
| Crustacea  |             | Amphipoda  | Gammaridae      |                | Gammarus         | Scuds                     | 2                 |
| Insecta    |             | Coleoptera | Dytiscidae      |                | Laccophilus      | Predaceous Diving Beetles | 1                 |
| Insecta    |             | Coleoptera | Dytiscidae      |                | Neobidessus      | Predaceous Diving Beetles | 5                 |
| Insecta    |             | Coleoptera | Elmidae         |                | Dubiraphia       | Riffle Beetles            | 1                 |
| Insecta    |             | Coleoptera | Elmidae         |                | Macronychus      | Riffle Beetles            | 3                 |
| Insecta    |             | Coleoptera | Elmidae         |                | Optioservus      | Riffle Beetles            | 177               |
| Insecta    |             | Coleoptera | Elmidae         |                | Stenelmis        | Riffle Beetles            | 67                |
| Insecta    |             | Coleoptera | Scirtidae       |                | Cyphon           |                           | 1                 |
| Insecta    |             | Diptera    | Athericidae     |                | Atherix          | Watersnipe Flies          | 4                 |
| Insecta    |             | Diptera    | Ceratopogonidae |                |                  | Biting Midges             | 2                 |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Cladotanytarsus  | Midges                    | 14                |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Dicrotendipes    | Midges                    | 3                 |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Micropsectra     | Midges                    | 1                 |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Microtendipes    | Midges                    | 40                |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Paracladopelma   | Midges                    | 2                 |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Paratanytarsus   | Midges                    | 1                 |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Polypedilum      | Midges                    | 8                 |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Rheotanytarsus   | Midges                    | 8                 |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Sublettea        | Midges                    | 1                 |
| Insecta    |             | Diptera    | Chironomidae    | Chironominae   | Tanytarsus       | Midges                    | 3                 |
| Insecta    |             | Diptera    | Chironomidae    | Orthocladiinae | Brillia          | Midges                    | 2                 |
| Insecta    |             | Diptera    | Chironomidae    | Orthocladiinae | Corynoneura      | Midges                    | 29                |
| Insecta    |             | Diptera    | Chironomidae    | Orthocladiinae | Cricotopus       | Midges                    | 210               |
| Insecta    |             | Diptera    | Chironomidae    | Orthocladiinae | Eukiefferiella   | Midges                    | 11                |
| Insecta    |             | Diptera    | Chironomidae    | Orthocladiinae | Limnophyes       | Midges                    | 9                 |
| Insecta    |             | Diptera    | Chironomidae    | Orthocladiinae | Nanocladius      | Midges                    | 3                 |
| Insecta    |             | Diptera    | Chironomidae    | Orthocladiinae | Parakiefferiella | Midges                    | 12                |

Credit River 2004 Macroinvertebrate Organism List (Monitoring Date 10/17/2004)

| Insecta     | Diptera           | Chironomidae     | Orthocladiinae | Parametriocnemus | Midges                    | 14 |
|-------------|-------------------|------------------|----------------|------------------|---------------------------|----|
| Insecta     | Diptera           | Chironomidae     | Orthocladiinae | Thienemanniella  | Midges                    | 73 |
| Insecta     | Diptera           | Chironomidae     | Orthocladiinae | Tvetenia         | Midges                    | 61 |
| Insecta     | Diptera           | Chironomidae     | Tanypodinae    |                  | Midges                    | 65 |
| Insecta     | Diptera           | Chironomidae     | Tanypodinae    | Labrundinia      | Midges                    | 1  |
| Insecta     | Diptera           | Simuliidae       |                | Simulium         | Black Flies               | 1  |
| Insecta     | Diptera           | Tipulidae        |                | Antocha          | Crane Flies               | 4  |
| Insecta     | Diptera           | Tipulidae        |                | Dicranota        | Crane Flies               | 30 |
| Insecta     | Diptera           | Tipulidae        |                | Hexatoma         | Crane Flies               | 3  |
| Insecta     | Diptera           | Tipulidae        |                | Tipula           | Crane Flies               | 1  |
| Insecta     | Ephemeroptera     | Baetidae         |                | Baetis           | Small Minnow Mayflies     | 93 |
| Insecta     | Ephemeroptera     | Heptageniidae    |                | Stenonema        | Flatheaded Mayflies       | 3  |
| Insecta     | Odonata           | Calopterygidae   |                | Calopteryx       | Broadwinged Damselflies   | 1  |
| Insecta     | Plecoptera        | Capniidae        |                | Allocapnia       | Slender Winter Stoneflies | 26 |
| Insecta     | Plecoptera        | Perlodidae       |                |                  | Perlodidae                | 16 |
| Insecta     | Plecoptera        | Taeniopterygidae |                | Taeniopteryx     | Taeniopterygid Broadbacks | 20 |
| Insecta     | Trichoptera       | Hydropsychidae   |                |                  | Common Netspinners        | 20 |
| Insecta     | Trichoptera       | Hydropsychidae   |                | Cheumatopsyche   | Common Netspinners        | 4  |
| Insecta     | Trichoptera       | Hydropsychidae   |                | Hydropsyche      | Common Netspinners        | 89 |
| Pelecypoda  | Eulamellibranchia | Sphaeriidae      |                | Pisidium         | Fingernail Clam           | 1  |
| Turbellaria |                   |                  |                |                  | Planaria                  | 3  |

| Class       | Order         | Family       | Sub-Family     | Genus            | Common Name               | Organism Count |
|-------------|---------------|--------------|----------------|------------------|---------------------------|----------------|
| Crustacea   | Amphipoda     | Gammaridae   |                | Gammarus         | Scuds                     | 60             |
| Crustacea   | Isopoda       | Asellidae    |                | Asellus          | Aquatic Sowbug            | 10             |
| Insecta     | Coleoptera    | Dytiscidae   |                | Neobidessus      | Predaceous Diving Beetles | 1              |
| Insecta     | Diptera       | Athericidae  |                | Atherix          | Watersnipe Flies          | 1              |
| Insecta     | Diptera       | Chironomidae | Chironominae   | Phaenopsectra    | Midges                    | 1              |
| Insecta     | Diptera       | Chironomidae | Diamesinae     | Diamesa          | Midges                    | 3              |
| Insecta     | Diptera       | Chironomidae | Orthocladiinae |                  | Midges                    | 5              |
| Insecta     | Diptera       | Chironomidae | Orthocladiinae | Corynoneura      | Midges                    | 4              |
| Insecta     | Diptera       | Chironomidae | Orthocladiinae | Eukiefferiella   | Midges                    | 3              |
| Insecta     | Diptera       | Chironomidae | Orthocladiinae | Metriocnemus     | Midges                    | 1              |
| Insecta     | Diptera       | Chironomidae | Orthocladiinae | Parametriocnemus | Midges                    | 1              |
| Insecta     | Diptera       | Chironomidae | Orthocladiinae | Thienemanniella  | Midges                    | 4              |
| Insecta     | Diptera       | Chironomidae | Orthocladiinae | Tvetenia         | Midges                    | 2              |
| Insecta     | Diptera       | Chironomidae | Prodiamesinae  | Prodiamesa       | Midges                    | 1              |
| Insecta     | Diptera       | Dixidae      |                | Dixella          | Dixid Midges              | 1              |
| Insecta     | Diptera       | Simuliidae   |                | Simulium         | Black Flies               | 30             |
| Insecta     | Diptera       | Tipulidae    |                | Dicranota        | Crane Flies               | 1              |
| Insecta     | Diptera       | Tipulidae    |                | Hexatoma         | Crane Flies               | 2              |
| Insecta     | Ephemeroptera | Baetidae     |                | Baetis           | Small Minnow Mayflies     | 547            |
| Turbellaria | <i>t</i>      |              |                |                  | Planaria                  | 1              |

Eagle Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/16/2004)

| Class       | Sub-Class   | Order         | Family         | Sub-Family     | Genus            | Common Name              | Organism<br>Count |
|-------------|-------------|---------------|----------------|----------------|------------------|--------------------------|-------------------|
| Clitellata  | Oligochaeta |               |                |                |                  | Segmented Worms          | 13                |
| Gastropoda  |             | Pulmonata     | Physidae       |                | Physella         | Snails                   | 14                |
| Insecta     |             | Coleoptera    | Curculionidae  |                | Rhinoncus        | Water Weevils            | 1                 |
| Insecta     |             | Coleoptera    | Elmidae        |                | Optioservus      | Riffle Beetles           | 645               |
| Insecta     |             | Coleoptera    | Elmidae        |                | Stenelmis        | Riffle Beetles           | 87                |
| Insecta     |             | Coleoptera    | Haliplidae     |                | Peltodytes       | Crawling Water Beetles   | 1                 |
| Insecta     |             | Diptera       | Chironomidae   | Chironominae   | Cryptochironomus | Midges                   | 1                 |
| Insecta     |             | Diptera       | Chironomidae   | Chironominae   | Polypedilum      | Midges                   | 2                 |
| Insecta     |             | Diptera       | Chironomidae   | Chironominae   | Rheotanytarsus   | Midges                   | 38                |
| Insecta     |             | Diptera       | Chironomidae   | Diamesinae     | Diamesa          | Midges                   | 1                 |
| Insecta     |             | Diptera       | Chironomidae   | Orthocladiinae |                  | Midges                   | 3                 |
| Insecta     | - 3<br>     | Diptera       | Chironomidae   | Orthocladiinae | Chaetocladius    | Midges                   | 1                 |
| Insecta     |             | Diptera       | Chironomidae   | Orthocladiinae | Corynoneura      | Midges                   | 7                 |
| Insecta     |             | Diptera       | Chironomidae   | Orthocladiinae | Diplocladius     | Midges                   | 1                 |
| Insecta     |             | Diptera       | Chironomidae   | Orthocladiinae | Eukiefferiella   | Midges                   | 26                |
| Insecta     |             | Diptera       | Chironomidae   | Orthocladiinae | Parametriocnemus | Midges                   | 40                |
| Insecta     |             | Diptera       | Chironomidae   | Orthocladiinae | Thienemanniella  | Midges                   | 6                 |
| Insecta     |             | Diptera       | Chironomidae   | Orthocladiinae | Tvetenia         | Midges                   | 65                |
| Insecta     |             | Diptera       | Chironomidae   | Tanypodinae    |                  | Midges                   | 8                 |
| Insecta     |             | Diptera       | Dolichopodidae |                | Rhaphium         | Aquatic Longlegged Flies | 1                 |
| Insecta     |             | Diptera       | Empididae      |                | Hemerodromia     | Aquatic Dance Flies      | 1                 |
| Insecta     |             | Diptera       | Simuliidae     |                | Simulium         | Black Flies              | 2                 |
| Insecta     |             | Diptera       | Tipulidae      |                | Tipula           | Crane Flies              | 1                 |
| Insecta     |             | Ephemeroptera | Baetidae       |                | Baetis           | Small Minnow Mayflies    | 195               |
| Insecta     |             | Trichoptera   | Hydropsychidae |                | Cheumatopsyche   | Common Netspinners       | 2                 |
| Insecta     |             | Trichoptera   | Hydropsychidae |                | Hydropsyche      | Common Netspinners       | 153               |
| Insecta     | -           | Trichoptera   | Leptoceridae   |                | Oecetis          | Longhorned Case Makers   | 1                 |
| Turbellaria |             |               |                |                |                  | Planaria                 | 8                 |

Fish Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/11/2004)

| Class       | Order         | Family         | Sub-Family     | Genus            | Common Name               | Organism Count |
|-------------|---------------|----------------|----------------|------------------|---------------------------|----------------|
| Insecta     | Coleoptera    | Dytiscidae     |                | Laccophilus      | Predaceous Diving Beetles | 1              |
| Insecta     | Coleoptera    | Dytiscidae     |                | Neobidessus      | Predaceous Diving Beetles | 2              |
| Insecta     | Coleoptera    | Elmidae        |                | Stenelmis        | Riffle Beetles            | 105            |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Chironomus       | Midges                    | 50             |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Cryptochironomus | Midges                    | 105            |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Dicrotendipes    | Midges                    | 15             |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Microtendipes    | Midges                    | 175            |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Nilothauma       | Midges                    | 5              |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Parachironomus   | Midges                    | 5              |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Polypedilum      | Midges                    | 1185           |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Rheotanytarsus   | Midges                    | 35             |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Saetheria        | Midges                    | 25             |
| Insecta     | Diptera       | Chironomidae   | Chironominae   | Tanytarsus       | Midges                    | 5              |
| Insecta     | Diptera       | Chironomidae   | Orthocladiinae | Corynoneura      | Midges                    | 20             |
| Insecta     | Diptera       | Chironomidae   | Orthocladiinae | Cricotopus       | Midges                    | 10             |
| Insecta     | Diptera       | Chironomidae   | Orthocladiinae | Thienemanniella  | Midges                    | 5              |
| Insecta     | Diptera       | Chironomidae   | Tanypodinae    |                  | Midges                    | 515            |
| Insecta     | Diptera       | Empididae      |                | Hemerodromia     | Aquatic Dance Flies       | 84             |
| Insecta     | Ephemeroptera | Caenidae       |                | Caenis           | Small Squaregills         | 37             |
| Insecta     | Ephemeroptera | Heptageniidae  |                | Stenonema        | Flatheaded Mayflies       | 5              |
| Insecta     | Odonata       | Coenagrionidae |                |                  | Narrowwinged Damselflies  | 3              |
| Insecta     | Trichoptera   | Hydropsychidae |                |                  | Common Netspinners        | 228            |
| Insecta     | Trichoptera   | Hydropsychidae |                | Cheumatopsyche   | Common Netspinners        | 178            |
| Insecta     | Trichoptera   | Hydropsychidae |                | Hydropsyche      | Common Netspinners        | 34             |
| Insecta     | Trichoptera   | Leptoceridae   |                | Oecetis          | Longhorned Case Makers    | 1              |
| Turbellaria |               |                |                |                  | Planaria                  | 7              |

Minnehaha Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/11/2004)

| Class      | Sub-Class   | Order         | Family           | Sub-Family     | Genus            | Common Name               | <b>Organism</b> Count |
|------------|-------------|---------------|------------------|----------------|------------------|---------------------------|-----------------------|
| Clitellata | Oligochaeta |               |                  |                |                  | Segmented Worms           | 9                     |
| Insecta    |             | Coleoptera    | Elmidae          |                | Stenelmis        | Riffle Beetles            | 29                    |
| Insecta    |             | Collembola    | Isotomidae       |                |                  | Springtail                | 5                     |
| Insecta    |             | Diptera       | Athericidae      |                | Atherix          | Watersnipe Flies          | 1                     |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Chironomus       | Midges                    | 1                     |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Cladotanytarsus  | Midges                    | 2                     |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Cryptochironomus | Midges                    | 5                     |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Micropsectra     | Midges                    | 1                     |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Microtendipes    | Midges                    | 21                    |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Polypedilum      | Midges                    | 11                    |
| Insecta    |             | Diptera       | Chironomidae     | Chironominae   | Rheotanytarsus   | Midges                    | 15                    |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Corynoneura      | Midges                    | 1                     |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Cricotopus       | Midges                    | 4                     |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Nanocladius      | Midges                    | 1                     |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Parametriocnemus | Midges                    | 2                     |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Rheocricotopus   | Midges                    | 1                     |
| Insecta    |             | Diptera       | Chironomidae     | Orthocladiinae | Thienemanniella  | Midges                    | 3                     |
| Insecta    |             | Diptera       | Chironomidae     | Tanypodinae    |                  | Midges                    | 24                    |
| Insecta    |             | Diptera       | Chironomidae     | Tanypodinae    | Procladius       | Midges                    | 1                     |
| Insecta    |             | Diptera       | Empididae        |                | Hemerodromia     | Aquatic Dance Flies       | 7                     |
| Insecta    |             | Diptera       | Simuliidae       |                | Simulium         | Black Flies               | 11                    |
| Insecta    |             | Diptera       | Tipulidae        |                | Dicranota        | Crane Flies               | 16                    |
| Insecta    |             | Diptera       | Tipulidae        |                | Tipula           | Crane Flies               | 1                     |
| Insecta    |             | Ephemeroptera | Baetidae         |                | Baetis           | Small Minnow Mayflies     | 12                    |
| Insecta    |             | Ephemeroptera | Caenidae         |                | Caenis           | Small Squaregills         | 1                     |
| Insecta    |             | Ephemeroptera | Heptageniidae    |                | Stenonema        | Flatheaded Mayflies       | 24                    |
| Insecta    |             | Ephemeroptera | Isonychiidae     |                | Isonychia        | Brushlegged Mayflies      | 1                     |
| Insecta    |             | Ephemeroptera | Leptophlebiidae  |                | Paraleptophlebia | Pronggills                | 1                     |
| Insecta    |             | Ephemeroptera | Tricorythidae    |                | Tricorythodes    | Little Stout Crawlers     | 4                     |
| Insecta    |             | Plecoptera    | Capniidae        |                | Allocapnia       | Slender Winter Stoneflies | 2                     |
| Insecta    |             | Plecoptera    | Perlidae         |                | Acroneuria       | Comon Stoneflies          | 2                     |
| Insecta    |             | Plecoptera    | Pteronarcyidae   |                | Pteronarcys      | Giant Stoneflies          | 1                     |
| Insecta    |             | Plecoptera    | Taeniopterygidae |                | Taeniopteryx     | Taeniopterygid Broadbacks | 25                    |
| Insecta    |             | Trichoptera   | Hydropsychidae   | 0<br>0         | Cheumatopsyche   | Common Netspinners        | 134                   |
| Insecta    |             | Trichoptera   | Hydropsychidae   |                | Hydropsyche      | Common Netspinners        | 27                    |

Sand Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/17/2004)

| Insecta     | Trichopter | a Hydropsychidae | Parapsyche  | Common Netspinners   | 28 |
|-------------|------------|------------------|-------------|----------------------|----|
| Insecta     | Trichopter | a Limnephilidae  | Limnephilus | Northern Case Makers | 2  |
| Turbellaria |            |                  | 020.54      | Planaria             | 14 |

| Class       | Sub-Class | Order            | Family           | Sub-Family     | Genus             | Common Name                | <b>Organism</b> Count |
|-------------|-----------|------------------|------------------|----------------|-------------------|----------------------------|-----------------------|
| Clitellata  | Hirudinea | Arhynchobdellida | Haemopidae       |                | Haemopis          | Leeches                    | 1                     |
| Crustacea   |           | Amphipoda        | Gammaridae       |                | Gammarus          | Scuds                      | 99                    |
| Crustacea   |           | Isopoda          | Asellidae        |                | Asellus           | Aquatic Sowbug             | 4                     |
| Insecta     |           | Coleoptera       | Elmidae          |                | Optioservus       | Riffle Beetles             | 38                    |
| Insecta     |           | Coleoptera       | Elmidae          |                | Stenelmis         | Riffle Beetles             | 1                     |
| Insecta     |           | Coleoptera       | Hydrophilidae    |                | Hydrochara        | Water Scavenger Beetles    | 2                     |
| Insecta     |           | Diptera          | Chironomidae     | Chironominae   | Rheotanytarsus    | Midges                     | 1                     |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Brillia           | Midges                     | 93                    |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Corynoneura       | Midges                     | 44                    |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Eukiefferiella    | Midges                     | 2                     |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Parachaetocladius | Midges                     | 1                     |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Parametriocnemus  | Midges                     | 21                    |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Paraphaenocladius | Midges                     | 3                     |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Stilocladius      | Midges                     | 1                     |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Thienemanniella   | Midges                     | 74                    |
| Insecta     |           | Diptera          | Chironomidae     | Orthocladiinae | Tvetenia          | Midges                     | 5                     |
| Insecta     |           | Diptera          | Chironomidae     | Prodiamesinae  | Prodiamesa        | Midges                     | 2                     |
| Insecta     |           | Diptera          | Chironomidae     | Tanypodinae    | Conchapelopia     | Midges                     | 1                     |
| Insecta     |           | Diptera          | Chironomidae     | Tanypodinae    | Zavrelimyia       | Midges                     | 4                     |
| Insecta     |           | Diptera          | Dixidae          |                |                   | Dixid Midges               | 1                     |
| Insecta     |           | Diptera          | Empididae        |                | Chelifera         | Aquatic Dance Flies        | 1                     |
| Insecta     |           | Diptera          | Simuliidae       | -              | Simulium          | Black Flies                | 5                     |
| Insecta     |           | Diptera          | Tipulidae        |                | Dicranota         | Crane Flies                | 23                    |
| Insecta     |           | Diptera          | Tipulidae        |                | Tipula            | Crane Flies                | 13                    |
| Insecta     |           | Ephemeroptera    | Baetidae         |                | Baetis            | Small Minnow Mayflies      | 64                    |
| Insecta     |           | Odonata          | Aeshnidae        |                | Boyeria           | Darners                    | 3                     |
| Insecta     |           | Plecoptera       | Capniidae        |                | Allocapnia        | Slender Winter Stoneflies  | 47                    |
| Insecta     |           | Plecoptera       | Nemouridae       |                |                   | Nemourid Broadbacks        | 20                    |
| Insecta     |           | Trichoptera      | Glossosomatidae  |                | Glossosoma        | Saddlecase Makers          | 10                    |
| Insecta     |           | Trichoptera      | Hydropsychidae   |                | Cheumatopsyche    | Common Netspinners         | 11                    |
| Insecta     |           | Trichoptera      | Hydropsychidae   |                | Hydropsyche       | Common Netspinners         | 3                     |
| Insecta     |           | Trichoptera      | Hydropsychidae   |                | Parapsyche        | Common Netspinners         | 21                    |
| Insecta     |           | Trichoptera      | Lepidostomatidae |                | Lepidostoma       | Lepidostomatid Case Makers | 27                    |
| Insecta     |           | Trichoptera      | Limnephilidae    |                | Hesperophylax     | Northern Case Makers       | 5                     |
| Turbellaria |           |                  |                  |                |                   | Planaria                   | 1                     |

Silver Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/7/2004)

| Class      | Order      | Family       | Sub-Family     | Genus             | Common Name               | Organism Count |
|------------|------------|--------------|----------------|-------------------|---------------------------|----------------|
| Crustacea  | Amphipoda  | Gammaridae   |                | Gammarus          | Scuds                     | 277            |
| Crustacea  | Isopoda    | Asellidae    |                | Asellus           | Aquatic Sowbug            | 5              |
| Gastropoda | Pulmonata  | Planorbidae  |                |                   | Snails                    | 19             |
| Insecta    | Coleoptera | Dytiscidae   |                | Neobidessus       | Predaceous Diving Beetles | 1              |
| Insecta    | Coleoptera | Elmidae      |                | Optioservus       | Riffle Beetles            | 323            |
| Insecta    | Collembola | Isotomidae   |                |                   | Springtail                | 6              |
| Insecta    | Diptera    | Chironomidae | Chironominae   | Micropsectra      | Midges                    | 11             |
| Insecta    | Diptera    | Chironomidae | Chironominae   | Polypedilum       | Midges                    | 1              |
| Insecta    | Diptera    | Chironomidae | Chironominae   | Rheotanytarsus    | Midges                    | 17             |
| Insecta    | Diptera    | Chironomidae | Chironominae   | Stempellinella    | Midges                    | 6              |
| Insecta    | Diptera    | Chironomidae | Diamesinae     | Diamesa           | Midges                    | 61             |
| Insecta    | Diptera    | Chironomidae | Diamesinae     | Pagastia          | Midges                    | 3              |
| Insecta    | Diptera    | Chironomidae | Orthocladiinae | Corynoneura       | Midges                    | 28             |
| Insecta    | Diptera    | Chironomidae | Orthocladiinae | Cricotopus        | Midges                    | 28             |
| Insecta    | Diptera    | Chironomidae | Orthocladiinae | Eukiefferiella    | Midges                    | 7              |
| Insecta    | Diptera    | Chironomidae | Orthocladiinae | Parachaetocladius | Midges                    | 2              |
| Insecta    | Diptera    | Chironomidae | Orthocladiinae | Parametriocnemus  | Midges                    | 9              |
| Insecta    | Diptera    | Chironomidae | Orthocladiinae | Thienemanniella   | Midges                    | 2              |
| Insecta    | Diptera    | Chironomidae | Orthocladiinae | Tvetenia          | Midges                    | 8              |
| Insecta    | Diptera    | Chironomidae | Prodiamesinae  | Odontomesa        | Midges                    | 1              |
| Insecta    | Diptera    | Chironomidae | Prodiamesinae  | Prodiamesa        | Midges                    | 4              |
| Insecta    | Diptera    | Chironomidae | Tanypodinae    |                   | Midges                    | 23             |
| Insecta    | Diptera    | Chironomidae | Tanypodinae    | Zavrelimyia       | Midges                    | 1              |
| Insecta    | Diptera    | Empididae    |                | Hemerodromia      | Aquatic Dance Flies       | 1              |
| Insecta    | Diptera    | Muscidae     |                | Limnophora        |                           | 1              |
| Insecta    | Diptera    | Simuliidae   |                | Simulium          | Black Flies               | 25             |
| Insecta    | Diptera    | Tipulidae    |                | Antocha           | Crane Flies               | 2              |
| Insecta    | Diptera    | Tipulidae    |                | Dicranota         | Crane Flies               | 3              |

Valley Creek 2004 Macroinvertebrate Organism List (Monitoring Date 10/7/2004)

| Insecta     | Diptera       | Tipulidae        | Hexatoma       | Crane Flies                   | 1   |
|-------------|---------------|------------------|----------------|-------------------------------|-----|
| Insecta     | Diptera       | Tipulidae        | Pedicia        | Crane Flies                   | 3   |
| Insecta     | Diptera       | Tipulidae        | Tipula         | Crane Flies                   | 1   |
| Insecta     | Ephemeroptera | Baetidae         | Baetis         | Small Minnow Mayflies         | 422 |
| Insecta     | Ephemeroptera | Caenidae         | Caenis         | Small Squaregills             | 1   |
| Insecta     | Ephemeroptera | Ephemerellidae   | Ephemerella    | Spiny Crawlers                | 1   |
| Insecta     | Ephemeroptera | Heptageniidae    | Stenonema      | Flatheaded Mayflies           | 2   |
| Insecta     | Hemiptera     | Corixidae        | Sigara         | Water Boatman                 | 1   |
| Insecta     | Trichoptera   | Brachycentridae  | Brachycentrus  | Humpless Case Makers          | 58  |
| Insecta     | Trichoptera   | Glossosomatidae  | Glossosoma     | Saddlecase Makers             | 41  |
| Insecta     | Trichoptera   | Hydropsychidae   |                | Common Netspinners            | 20  |
| Insecta     | Trichoptera   | Hydropsychidae   | Cheumatopsyche | Common Netspinners            | 9   |
| Insecta     | Trichoptera   | Hydropsychidae   | Hydropsyche    | Common Netspinners            | 15  |
| Insecta     | Trichoptera   | Hydroptilidae    |                | Micro Caddisflies             | 2   |
| Insecta     | Trichoptera   | Hydroptilidae    | Hydroptila     | Micro Caddisflies             | 1   |
| Insecta     | Trichoptera   | Lepidostomatidae | Lepidostoma    | Lepidostomatid Case<br>Makers | 2   |
| Insecta     | Trichoptera   | Limnephilidae    | Pycnopsyche    | Northern Case Makers          | 1   |
| Insecta     | Trichoptera   | Philopotamidae   | Chimarra       | Fingernet Caddisflies         | 4   |
| Insecta     | Trichoptera   | Psychomyiidae    | Lype           | Nettube Caddisflies           | 1   |
| Turbellaria |               |                  |                | Planaria                      | 19  |

| Class       | Sub-Class   | Order         | Family           | Sub-Family     | Genus           | Common Name               | Organism Count |
|-------------|-------------|---------------|------------------|----------------|-----------------|---------------------------|----------------|
| Clitellata  | Oligochaeta |               |                  |                |                 | Segmented Worms           | 3              |
| Insecta     |             | Coleoptera    | Elmidae          |                | Ancyronyx       | Riffle Beetles            | 1              |
| Insecta     |             | Coleoptera    | Elmidae          |                | Optioservus     | Riffle Beetles            | 37             |
| Insecta     |             | Coleoptera    | Elmidae          |                | Stenelmis       | Riffle Beetles            | 24             |
| Insecta     |             | Diptera       | Athericidae      |                | Atherix         | Watersnipe Flies          | 12             |
| Insecta     |             | Diptera       | Chironomidae     | Chironominae   | Cladotanytarsus | Midges                    | 1              |
| Insecta     |             | Diptera       | Chironomidae     | Chironominae   | Microtendipes   | Midges                    | 2              |
| Insecta     |             | Diptera       | Chironomidae     | Chironominae   | Rheotanytarsus  | Midges                    | 2              |
| Insecta     |             | Diptera       | Chironomidae     | Orthocladiinae | Brillia         | Midges                    | 2              |
| Insecta     |             | Diptera       | Chironomidae     | Orthocladiinae | Cricotopus      | Midges                    | 11             |
| Insecta     |             | Diptera       | Chironomidae     | Orthocladiinae | Eukiefferiella  | Midges                    | 3              |
| Insecta     |             | Diptera       | Chironomidae     | Orthocladiinae | Thienemanniella | Midges                    | 1              |
| Insecta     |             | Diptera       | Chironomidae     | Orthocladiinae | Tvetenia        | Midges                    | 8              |
| Insecta     |             | Diptera       | Empididae        |                | Hemerodromia    | Aquatic Dance Flies       | 1              |
| Insecta     |             | Diptera       | Simuliidae       |                | Simulium        | Black Flies               | 5              |
| Insecta     |             | Diptera       | Stratiomyidae    |                |                 | Aquatic Soldier Flies     | 1              |
| Insecta     |             | Diptera       | Tipulidae        |                | Antocha         | Crane Flies               | 36             |
| Insecta     |             | Diptera       | Tipulidae        |                | Dicranota       | Crane Flies               | 3              |
| Insecta     |             | Diptera       | Tipulidae        |                | Tipula          | Crane Flies               | 1              |
| Insecta     |             | Ephemeroptera | Baetidae         |                | Baetis          | Small Minnow Mayflies     | 8              |
| Insecta     |             | Ephemeroptera | Baetiscidae      |                | Baetisca        | Armored Mayflies          | 1              |
| Insecta     |             | Ephemeroptera | Caenidae         |                | Caenis          | Small Squaregills         | 1              |
| Insecta     |             | Ephemeroptera | Heptageniidae    |                | Stenonema       | Flatheaded Mayflies       | 23             |
| Insecta     |             | Odonata       | Calopterygidae   |                | Hetaerina       | Broadwinged Damselflies   | 1              |
| Insecta     |             | Plecoptera    | Perlidae         |                | Acroneuria      | Comon Stoneflies          | 1              |
| Insecta     |             | Plecoptera    | Perlodidae       |                |                 | Perlodidae                | 4              |
| Insecta     |             | Plecoptera    | Pteronarcyidae   |                | Pteronarcys     | Giant Stoneflies          | 5              |
| Insecta     |             | Plecoptera    | Taeniopterygidae |                | Taeniopteryx    | Taeniopterygid Broadbacks | 37             |
| Insecta     | 7           | Trichoptera   | Brachycentridae  |                | Brachycentrus   | Humpless Case Makers      | 2              |
| Insecta     |             | Trichoptera   | Hydropsychidae   |                | Hydropsyche     | Common Netspinners        | 310            |
| Insecta     |             | Trichoptera   | Leptoceridae     |                | Ceraclea        | Longhorned Case Makers    | 1              |
| Insecta     |             | Trichoptera   | Psychomyiidae    |                | Psychomyia      | Nettube Caddisflies       | 3              |
| Turbellaria |             |               |                  |                |                 | Planaria                  | 4              |

Vermillion River 2004 Macroinvertebrate Organism List (Monitoring Date 10/15/2004)

## **APPENDIX D: SUMMARY OF FLUX CALCULATIONS AND RESULTS**

| Battle C | 'reek        |           |      |               |                      |                                       |       |                      |                        |                |                |      |
|----------|--------------|-----------|------|---------------|----------------------|---------------------------------------|-------|----------------------|------------------------|----------------|----------------|------|
| Site     | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-Conc<br>(ug/L) | Model-Mass<br>(kg)                    | CV    | Model-Conc<br>(mg/L) | Model-Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| BA0022   | 2970         | NO3       | 2000 | 5.33          | 432                  | 2,307                                 | 0.049 | 0.432                | 0.78                   | 78.3           | 18.0           | 0.23 |
| BA0022   | 2970         | NO3       | 2001 | 5.38          | 431                  | 2,322                                 | 0.049 | 0.431                | 0.78                   | 83.9           | 18.1           | 0.22 |
| BA0022   | 2970         | NO3       | 2002 | 8.76          | 419                  | 3,670                                 | 0.049 | 0.419                | 1.24                   | 112.1          | 29.5           | 0.26 |
| BA0022   | 2970         | NO3       | 2003 | 6.49          | 434                  | 2,815                                 | 0.049 | 0.434                | 0.95                   | 60.2           | 21.8           | 0.36 |
| BA0022   | 2970         | NO3       | 2004 | 8.30          | 412                  | 3,422                                 | 0.049 | 0.412                | 1.15                   | 77.1           | 28.0           | 0.36 |
| BA0022   | 2970         | TDP       | 1997 | 5.42          | 73                   | 394                                   | 0.313 | 0.073                | 0.13                   | 80.7           | 18.2           | 0.23 |
| BA0022   | 2970         | TDP       | 1998 | 3.72          | 86                   | 320                                   | 0.194 | 0.086                | 0.11                   | 96.9           | 12.5           | 0.13 |
| BA0022   | 2970         | TDP       | 1999 | 7.69          | 49                   | 377                                   | 0.102 | 0.049                | 0.13                   | 82.3           | 25.9           | 0.31 |
| BA0022   | 2970         | TDP       | 2000 | 5.33          | 45                   | 239                                   | 0.045 | 0.045                | 0.08                   | 78.3           | 18.0           | 0.23 |
| BA0022   | 2970         | TDP       | 2001 | 5.38          | 45                   | 242                                   | 0.045 | 0.045                | 0.08                   | 83.9           | 18.1           | 0.22 |
| BA0022   | 2970         | TDP       | 2002 | 8.76          | 46                   | 403                                   | 0.045 | 0.046                | 0.14                   | 112.1          | 29.5           | 0.26 |
| BA0022   | 2970         | TDP       | 2003 | 6.49          | 45                   | 292                                   | 0.045 | 0.045                | 0.10                   | 60.2           | 21.8           | 0.36 |
| BA0022   | 2970         | TDP       | 2004 | 8.30          | 46                   | 382                                   | 0.045 | 0.046                | 0.13                   | 77.1           | 28.0           | 0.36 |
| BA0022   | 2970         | TKN       | 2000 | 5.33          | 1,023                | 5,458                                 | 0.044 | 1.023                | 1.84                   | 78.3           | 18.0           | 0.23 |
| BA0022   | 2970         | TKN       | 2001 | 5.38          | 1,010                | 5,437                                 | 0.044 | 1.010                | 1.83                   | 83.9           | 18.1           | 0.22 |
| BA0022   | 2970         | TKN       | 2002 | 8.76          | 1,105                | 9,684                                 | 0.044 | 1.105                | 3.26                   | 112.1          | 29.5           | 0.26 |
| BA0022   | 2970         | TKN       | 2003 | 6.49          | 1,010                | 6,547                                 | 0.044 | 1.010                | 2.20                   | 60.2           | 21.8           | 0.36 |
| BA0022   | 2970         | TKN       | 2004 | 8.30          | 1,056                |                                       | 0.044 | 1.056                | 2.95                   | 77.1           | 28.0           | 0.36 |
| BA0022   | 2970         | TP        | 1997 | 5.42          | 148                  |                                       | 0.183 | 0.148                | 0.27                   | 80.7           | 18.2           | 0.23 |
| BA0022   | 2970         | TP        | 1998 | 3.72          | 266                  |                                       | 0.238 | 0.266                | 0.33                   | 96.9           | 12.5           | 0.13 |
| BA0022   | 2970         | TP        | 1999 | 7.69          | 198                  |                                       | 0.122 | 0.198                | 0.51                   | 82.3           | 25.9           | 0.31 |
| BA0022   | 2970         | TP        | 2000 | 5.33          | 182                  |                                       | 0.084 | 0.182                | 0.33                   | 78.3           | 18.0           | 0.23 |
| BA0022   | 2970         | TP        | 2001 | 5.38          | 178                  |                                       | 0.084 | 0.178                | 0.32                   | 83.9           | 18.1           | 0.22 |
| BA0022   | 2970         | TP        | 2002 | 8.76          | 204                  |                                       | 0.084 | 0.204                | 0.60                   | 112.1          | 29.5           | 0.26 |
| BA0022   | 2970         | TP        | 2003 | 6.49          | 177                  |                                       | 0.084 | 0.177                | 0.39                   | 60.2           | 21.8           | 0.36 |
| BA0022   | 2970         | TP        | 2004 | 8.30          | 188                  | · · · · · · · · · · · · · · · · · · · | 0.084 | 0.188                | 0.53                   | 77.1           | 28.0           | 0.36 |
| BA0022   | 2970         | TSS       | 1997 | 5.42          | 50,689               | 274,516                               |       | 50.689               | 92.43                  | 80.7           | 18.2           | 0.23 |
| BA0022   | 2970         | TSS       | 1998 | 3.72          | 86,501               | 322,156                               |       | 86.501               | 108.47                 | 96.9           | 12.5           | 0.13 |
| BA0022   | 2970         | TSS       | 1999 | 7.69          | 70,874               | 544,943                               |       | 70.874               | 183.48                 | 82.3           | 25.9           | 0.31 |
| BA0022   | 2970         | TSS       | 2000 | 5.33          | 56,020               | 298,809                               |       | 56.020               | 100.61                 | 78.3           | 18.0           | 0.23 |
| BA0022   | 2970         | TSS       | 2001 | 5.38          | 49,411               | 265,882                               |       | 49.411               | 89.52                  | 83.9           | 18.1           | 0.22 |
| BA0022   | 2970         | TSS       | 2002 | 8.76          | 69,024               | 604,928                               |       | 69.024               | 203.68                 | 112.1          | 29.5           | 0.26 |
| BA0022   | 2970         | TSS       | 2003 | 6.49          | 55,307               | 358,669                               |       | 55.307               | 120.76                 | 60.2           | 21.8           | 0.36 |
| BA0022   | 2970         | TSS       | 2004 | 8.30          | 60,290               | 500,587                               | 0.134 | 60.290               | 168.55                 | 77.1           | 28.0           | 0.36 |

| Site   Area<br>(ha)   Parameter   Year   Fiow<br>(hm3)   Model-Conc<br>(ug/L)   Model-Mass<br>(kg)   CV   Model-Conc<br>(mg/L)   Model-Yield<br>(kg/ha)   Precip<br>(cm)   Runoff   C     BE0020   33750   NO3   1990   22.20   16,238   360,431   0.102   16,238   10.68   86.7   6.6   0.08     BE0020   33750   NO3   1992   95.81   5,845   560,021   0.52   5,845   16,59   93.9   28.4   0.50     BE0020   33750   NO3   1994   78.67   5,467   430,026   0.052   5,768   30.24   88.7   52.4   0.59     BE0020   33750   NO3   1995   72.32   5,586   404,030   0.052   5,586   11.97   79.6   21.4   0.27     BE0020   33750   NO3   1997   108.05   7,726   834,763   0.065   7.506   16.42   98.8   15.5   0.14     BE0020   33750   NO3   20 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BEO020   33750   NO3   1990   22.20   16.238   360,431   0.102   16.238   10.68   86.7   6.6   0.08     BE0020   33750   NO3   1991   52.30   17,797   930,728   0.102   17.797   27.58   90.2   15.5   0.17     BE0020   33750   NO3   1992   95.81   5.845   560,021   0.052   5.845   16.59   93.9   28.4   0.30     BE0020   33750   NO3   1993   176.93   5,768   1,020,563   0.052   5.467   12.74   89.5   23.3   0.26     BE0020   33750   NO3   1996   72.32   5,586   404,030   0.052   5.467   12.74   89.5   21.3   0.24     BE0020   33750   NO3   1996   73.84   7,506   54,290   0.065   7.726   24.73   70.5   32.0   0.45     BE0020   33750   NO3   1999   52.38   6,803                                                              |
| BE0020   33750   NO3   1991   52.30   17,797   930,728   0.102   17.797   27.58   90.2   15.5   0.17     BE0020   33750   NO3   1992   95.81   5,845   560,021   0.52   5.845   16.59   93.9   28.4   0.30     BE0020   33750   NO3   1993   176.93   5,768   1,020,563   0.52   5.768   30.24   88.7   52.4   0.59     BE0020   33750   NO3   1994   78.67   5,467   430,026   0.52   5.467   12.74   89.5   23.3   0.26     BE0020   33750   NO3   1995   72.32   5,586   404,030   0.52   5.467   12.74   89.5   11.5   0.14     BE0020   33750   NO3   1997   108.05   7,726   834,763   0.065   7.506   16.42   99.8   21.9   0.22     BE0020   33750   NO3   2000   7.87   2,622                                                                  |
| BE002033750NO3199295.815,845560,0210.0525.84516.5993.928.40.30BE002033750NO31994176.935,7681,020,630.0525,76830.2488.752.40.59BE002033750NO3199478.675,467430,0260.0525,56611.9779.621.40.27BE002033750NO3199572.325,586404,0300.0525,54606.2882.511.50.14BE002033750NO31997108.057,726834,7630.0657,72624.7370.532.00.45BE002033750NO3199873.847,506554,2900.0657.50616.4299.821.90.22BE002033750NO320017.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO320017.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO320017.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO320047.5769,235514,9350.66011.52824.5470.021.30.30BE002033750NO320045.769,235514,9350.6689.23515.2688.416.5 </td                                                      |
| BE002033750NO3199295.815,845560,0210.0525.84516.5993.928.40.30BE002033750NO31994176.935,7681,020,630.0525,76830.2488.752.40.59BE002033750NO3199478.675,467430,0260.0525,56611.9779.621.40.27BE002033750NO3199572.325,586404,0300.0525,54606.2882.511.50.14BE002033750NO31997108.057,726834,7630.0657,72624.7370.532.00.45BE002033750NO3199873.847,506554,2900.0657.50616.4299.821.90.22BE002033750NO320017.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO320017.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO320017.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO320047.5769,235514,9350.66011.52824.5470.021.30.30BE002033750NO320045.769,235514,9350.6689.23515.2688.416.5 </td                                                      |
| BE002033750NO31993176.935,7681,020,5630.0525.76830.2488.752.40.59BE002033750NO3199478.675,467430,0260.0525.46712.7489.523.30.26BE002033750NO3199572.325,586400,0300.0525.58611.9779.621.40.27BE002033750NO3199638.45,460212,0440.0525.4606.2882.511.50.14BE002033750NO31997108.057,726834,7630.0657.72624.7370.532.00.45BE002033750NO3199873.847,506554,2900.0657.50616.4299.821.90.22BE002033750NO3199952.386,803356,3150.0656.80310.5688.015.50.18BE002033750NO320007.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO3200287.5010,479916,9770.6011.47927.17105.625.90.25BE002033750NO3200455.769,235514,9350.689.23515.2688.416.50.19BE002033750NO3200455.769,235514,9350.689.23515.2688.4 <td< td=""></td<>                                      |
| BE002033750NO3199478.675,467430,0260.0525.46712.7489.523.30.26BE002033750NO3199572.325,586404,0300.0525,58611.9779.621.40.27BE002033750NO3199638.845,460212,0440.0525,4606.2882.511.50.14BE002033750NO31997108.057,726834,7630.0657,72624.7370.532.00.45BE002033750NO3199873.847,506554,2900.0657.50616.4299.821.90.22BE002033750NO3199952.386,803356,3150.0652.6220.6159.62.30.04BE002033750NO320007.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO3200287.5010,479916,9770.6011.47927.17105.625.90.25BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750NO3200455.769,235514,9350.689.23515.2688.416.50.19BE002033750TDP199152.3057430,0400.780.5730.3886.76.6                                                             |
| BE002033750NO3199638.845,460212,0440.0525.4606.2882.511.50.14BE002033750NO31997108.057,726834,7630.0657.72624.7370.532.00.45BE002033750NO3199873.847,506554,2900.0657.50616.4299.821.90.22BE002033750NO3199952.386,803356,3150.0656.80310.5688.015.50.18BE002033750NO320007.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO3200171.8411,528828,1530.06011.52824.5470.021.30.30BE002033750NO3200287.5010,479916,9770.6010.47927.17105.625.90.25BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199122.0057312,7260.0780.5730.3886.76.60.80BE002033750TDP199152.3057430,0400.780.5740.8990.215.50.17BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.4<                                                              |
| BE002033750NO3199638.845,460212,0440.0525.4606.2882.511.50.14BE002033750NO31997108.057,726834,7630.0657.72624.7370.532.00.45BE002033750NO3199873.847,506554,2900.0657.50616.4299.821.90.22BE002033750NO3199952.386,803356,3150.0656.80310.5688.015.50.18BE002033750NO320017.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO3200171.8411,528828,1530.06011.52824.5470.021.30.30BE002033750NO3200287.5010,479916,9770.06010.47927.17105.625.90.25BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199122.0057312,7260.0780.5730.3886.76.60.8BE002033750TDP199152.3057430,0400.780.5740.8990.215.50.17BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.4<                                                              |
| BE002033750NO31997108.057,726834,7630.0657.72624.7370.532.00.45BE002033750NO3199873.847,506554,2900.0657.50616.4299.821.90.22BE002033750NO3199952.386,803356,3150.0656.80310.5688.015.50.18BE002033750NO320007.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO3200171.8411,528828,1530.6011.52824.5470.021.30.30BE002033750NO3200333.488,142272,5940.0608.1428.0849.09.90.20BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.400.2910.6889.523.30.26 <t< td=""></t<>                                                         |
| BE002033750NO3199952.386,803356,3150.0656.80310.5688.015.50.18BE002033750NO320007.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO3200171.8411,528828,1530.06011.52824.5470.021.30.30BE002033750NO3200287.5010,479916,9770.06010.47927.17105.625.90.25BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.0780.5740.8990.215.50.17BE002033750TDP199295.8132431,0810.0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199478.6729122,9270.0400.3040.6579.621.40.27                                                                     |
| BE002033750NO320007.872,62220,6240.0652.6220.6159.62.30.04BE002033750NO3200171.8411,528828,1530.06011.52824.5470.021.30.30BE002033750NO3200287.5010,479916,9770.06010.47927.17105.625.90.25BE002033750NO3200333.488,142272,5940.0608.1428.0849.09.90.20BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.0780.5740.8990.215.50.17BE002033750TDP199295.8132431,0810.0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27                                                                       |
| BE002033750NO3200171.8411,528828,1530.06011.52824.5470.021.30.30BE002033750NO3200287.5010,479916,9770.06010.47927.17105.625.90.25BE002033750NO3200333.488,142272,5940.0608.1428.0849.09.90.20BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.0780.5740.8990.215.50.17BE002033750TDP199295.8132431,0810.400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.400.3000.9670.532.00.45                                                                            |
| BE002033750NO3200287.5010,479916,9770.06010,47927.17105.625.90.25BE002033750NO3200333.488,142272,5940.0608.1428.0849.09.90.20BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.0780.5740.8990.215.50.17BE002033750TDP199295.8132431,0810.0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45                                                                            |
| BE002033750NO3200333.488,142272,5940.0608.1428.0849.09.90.20BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.0780.5740.8990.215.50.17BE002033750TDP199295.8132431,0810.0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP1997108.0530032,3610.0540.2900.6399.821.90.22 <t< td=""></t<>                                                                  |
| BE002033750NO3200455.769,235514,9350.0689.23515.2688.416.50.19BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.0780.5740.8990.215.50.17BE002033750TDP199295.8132431,0810.0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18<                                                                                    |
| BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.0780.5740.8990.215.50.17BE002033750TDP199295.8132431,0810.0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                   |
| BE002033750TDP199022.2057312,7260.0780.5730.3886.76.60.08BE002033750TDP199152.3057430,0400.0780.5740.8990.215.50.17BE002033750TDP199295.8132431,0810.0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                   |
| BE002033750TDP199295.8132431,0810.0400.3240.9293.928.40.30BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                                                                                                                                      |
| BE002033750TDP1993176.9334460,8010.0400.3441.8088.752.40.59BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                                                                                                                                                                                                |
| BE002033750TDP199478.6729122,9270.0400.2910.6889.523.30.26BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                                                                                                                                                                                                                                                           |
| BE002033750TDP199572.3230422,0050.0400.3040.6579.621.40.27BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BE002033750TDP199638.8430511,8630.0400.3050.3582.511.50.14BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BE002033750TDP1997108.0530032,3610.0540.3000.9670.532.00.45BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BE002033750TDP199873.8429021,3810.0540.2900.6399.821.90.22BE002033750TDP199952.3827414,3430.0540.2740.4288.015.50.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BE0020 33750 TDP 1999 52.38 274 14,343 0.054 0.274 0.42 88.0 15.5 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RE0020 33750 TDD 2000 7.87 221 1.727 0.054 0.221 0.05 50.6 2.2 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DE0020 33730 TDF 2000 7.07 221 1,737 0.034 0.221 0.03 39.0 2.3 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BE0020 33750 TDP 2001 71.84 363 26,090 0.049 0.363 0.77 70.0 21.3 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BE0020 33750 TDP 2002 87.50 343 30,033 0.049 0.343 0.89 105.6 25.9 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BE0020 33750 TDP 2003 33.48 299 9,997 0.049 0.299 0.30 49.0 9.9 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BE0020 33750 TDP 2004 55.76 329 18,326 0.056 0.329 0.54 88.4 16.5 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BE0020 33750 TKN 2004 55.76 2,596 144,734 0.075 2.596 4.29 88.4 16.5 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BE0020 33750 TP 1990 22.20 808 17,926 0.082 0.808 0.53 86.7 6.6 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BE0020 33750 TP 1991 52.30 893 46,702 0.082 0.893 1.38 90.2 15.5 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BE0020 33750 TP 1992 95.81 762 73,011 0.112 0.762 2.16 93.9 28.4 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BE0020 33750 TP 1993 176.93 832 147,180 0.112 0.832 4.36 88.7 52.4 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BE0020 33750 TP 1994 78.67 642 50,478 0.112 0.642 1.50 89.5 23.3 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| BE0020 | 33750 | TP  | 1995 | 72.32  | 686     | 49,647     | 0 112 | 0.686   | 1.47     | 79.6  | 21.4 | 0.27 |
|--------|-------|-----|------|--------|---------|------------|-------|---------|----------|-------|------|------|
| BE0020 | 33750 | TP  | 1996 | 38.84  | 681     | 26,433     |       | 0.681   | 0.78     | 82.5  | 11.5 | 0.14 |
| BE0020 | 33750 | TP  | 1997 | 108.05 | 671     | 72,473     |       | 0.671   | 2.15     | 70.5  | 32.0 | 0.45 |
|        |       |     |      |        |         |            |       |         |          |       |      |      |
| BE0020 | 33750 | TP  | 1998 | 73.84  | 632     | 46,673     |       | 0.632   | 1.38     | 99.8  | 21.9 | 0.22 |
| BE0020 | 33750 | TP  | 1999 | 52.38  | 562     | 29,454     |       | 0.562   | 0.87     | 88.0  | 15.5 | 0.18 |
| BE0020 | 33750 | TP  | 2000 | 7.87   | 283     |            | 0.054 | 0.283   | 0.07     | 59.6  | 2.3  | 0.04 |
| BE0020 | 33750 | TP  | 2001 | 71.84  | 692     | 49,701     |       | 0.692   | 1.47     | 70.0  | 21.3 | 0.30 |
| BE0020 | 33750 | TP  | 2002 | 87.50  | 613     | 53,652     | 0.063 | 0.613   | 1.59     | 105.6 | 25.9 | 0.25 |
| BE0020 | 33750 | TP  | 2003 | 33.48  | 461     | 15,425     | 0.063 | 0.461   | 0.46     | 49.0  | 9.9  | 0.20 |
| BE0020 | 33750 | TP  | 2004 | 55.76  | 637     | 35,503     | 0.074 | 0.637   | 1.05     | 88.4  | 16.5 | 0.19 |
| BE0020 | 33750 | TSS | 1990 | 22.20  | 173,665 | 3,854,907  | 0.146 | 173.665 | 114.22   | 86.7  | 6.6  | 0.08 |
| BE0020 | 33750 | TSS | 1991 | 52.30  | 209,554 | 10,958,970 | 0.146 | 209.554 | 324.71   | 90.2  | 15.5 | 0.17 |
| BE0020 | 33750 | TSS | 1992 | 95.81  | 248,278 | 23,787,020 | 0.149 | 248.278 | 704.80   | 93.9  | 28.4 | 0.30 |
| BE0020 | 33750 | TSS | 1993 | 176.93 | 339,137 | 60,004,240 | 0.149 | 339.137 | 1,777.90 | 88.7  | 52.4 | 0.59 |
| BE0020 | 33750 | TSS | 1994 | 78.67  | 190,851 | 15,013,370 | 0.149 | 190.851 | 444.84   | 89.5  | 23.3 | 0.26 |
| BE0020 | 33750 | TSS | 1995 | 72.32  | 211,360 | 15,286,180 | 0.149 | 211.360 | 452.92   | 79.6  | 21.4 | 0.27 |
| BE0020 | 33750 | TSS | 1996 | 38.84  | 196,504 | 7,631,723  | 0.149 | 196.504 | 226.13   | 82.5  | 11.5 | 0.14 |
| BE0020 | 33750 | TSS | 1997 | 108.05 | 293,461 | 31,708,170 | 0.105 | 293.461 | 939.50   | 70.5  | 32.0 | 0.45 |
| BE0020 | 33750 | TSS | 1998 | 73.84  | 264,627 | 19,541,210 | 0.105 | 264.627 | 579.00   | 99.8  | 21.9 | 0.22 |
| BE0020 | 33750 | TSS | 1999 | 52.38  | 218,287 | 11,433,020 | 0.105 | 218.287 | 338.76   | 88.0  | 15.5 | 0.18 |
| BE0020 | 33750 | TSS | 2000 | 7.87   | 21,137  | 166,237    | 0.105 | 21.137  | 4.93     | 59.6  | 2.3  | 0.04 |
| BE0020 | 33750 | TSS | 2001 | 71.63  | 393,099 | 28,158,082 | 0.149 | 393.099 | 834.31   | 70.0  | 21.2 | 0.30 |
| BE0020 | 33750 | TSS | 2002 | 87.50  | 339,282 | 29,687,871 | 0.149 | 339.282 | 879.64   | 105.6 | 25.9 | 0.25 |
| BE0020 | 33750 | TSS | 2003 | 33.48  | 233,790 | 7,828,231  | 0.149 | 233.790 | 231.95   | 49.0  | 9.9  | 0.20 |
| BE0020 | 33750 | TSS | 2004 | 55.76  | 335,121 | 18,685,325 |       | 335.121 | 553.64   | 88.4  | 16.5 | 0.19 |
|        |       |     |      |        |         |            |       |         |          |       |      |      |

| Bevens | Creek –      | - Upper   |      |               |                          |                 |       |                          |                            |                |                |      |
|--------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site   | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| BE0050 | 23400        | NO3       | 2002 | 47.87         | 7,985                    | 382,222         | 0.076 | 7.985                    | 16.33                      | 105.6          | 20.5           | 0.19 |
| BE0050 | 23400        | NO3       | 2003 | 16.42         | 7,862                    | 129,078         | 0.076 | 7.862                    | 5.52                       | 49.0           | 7.0            | 0.14 |
| BE0050 | 23400        | NO3       | 2004 | 34.53         | 7,878                    | 272,019         | 0.076 | 7.878                    | 11.62                      | 88.4           | 14.8           | 0.17 |
| BE0050 | 23400        | TDP       | 2003 | 16.42         | 359                      | 5,887           | 0.088 | 0.359                    | 0.25                       | 49.0           | 7.0            | 0.14 |
| BE0050 | 23400        | TDP       | 2004 | 34.53         | 342                      | 11,821          | 0.088 | 0.342                    | 0.51                       | 88.4           | 14.8           | 0.17 |
| BE0050 | 23400        | TKN       | 2002 | 47.87         | 2,332                    | 111,644         | 0.039 | 2.332                    | 4.77                       | 105.6          | 20.5           | 0.19 |
| BE0050 | 23400        | TKN       | 2003 | 16.42         | 2,225                    | 36,538          | 0.039 | 2.225                    | 1.56                       | 49.0           | 7.0            | 0.14 |
| BE0050 | 23400        | TKN       | 2004 | 34.53         | 2,331                    | 80,500          | 0.039 | 2.331                    | 3.44                       | 88.4           | 14.8           | 0.17 |
| BE0050 | 23400        | TP        | 2003 | 16.42         | 538                      | 8,841           | 0.096 | 0.538                    | 0.38                       | 49.0           | 7.0            | 0.14 |
| BE0050 | 23400        | TP        | 2004 | 34.53         | 598                      | 20,631          | 0.096 | 0.598                    | 0.88                       | 88.4           | 14.8           | 0.17 |
| BE0050 | 23400        | TSS       | 2003 | 16.42         | 215,902                  | 3,544,892       | 0.146 | 215.902                  | 151.49                     | 49.0           | 7.0            | 0.14 |
| BE0050 | 23400        | TSS       | 2004 | 34.53         | 306,845                  | 10,594,734      | 0.146 | 306.845                  | 452.77                     | 88.4           | 14.8           | 0.17 |

| Bluff C | reek         |           |      |               |                          |                 |       |                          |                            |                |                |      |
|---------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site    | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| BL0035  | 1470         | NO3       | 1991 | 5.67          | 983                      | 5,573           | 0.073 | 0.983                    | 3.79                       | 105.1          | 38.6           | 0.37 |
| BL0035  | 1470         | NO3       | 1992 | 6.02          | 919                      | 5,527           | 0.073 | 0.919                    | 3.76                       | 77.2           | 40.9           | 0.53 |
| BL0035  | 1470         | NO3       | 1993 | 6.23          | 923                      | 5,750           | 0.073 | 0.923                    | 3.91                       | 97.2           | 42.4           | 0.44 |
| BL0035  | 1470         | NO3       | 1994 | 6.12          | 917                      | 5,607           | 0.073 | 0.917                    | 3.81                       | 83.7           | 41.6           | 0.50 |
| BL0035  | 1470         | NO3       | 1995 | 3.84          | 880                      | 3,376           | 0.073 | 0.880                    | 2.30                       | 77.2           | 26.1           | 0.34 |
| BL0035  | 1470         | NO3       | 1996 | 2.84          | 878                      | 2,496           | 0.073 | 0.878                    | 1.70                       | 63.6           | 19.3           | 0.30 |
| BL0035  | 1470         | NO3       | 1997 | 6.46          | 952                      | 6,147           | 0.073 | 0.952                    | 4.18                       | 80.1           | 43.9           | 0.55 |
| BL0035  | 1470         | NO3       | 1998 | 6.34          | 951                      | 6,023           | 0.073 | 0.951                    | 4.10                       | 81.2           | 43.1           | 0.53 |
| BL0035  | 1470         | NO3       | 1999 | 3.74          | 873                      | 3,265           | 0.073 | 0.873                    | 2.22                       | 75.5           | 25.4           | 0.34 |
| BL0035  | 1470         | NO3       | 2000 | 1.95          | 835                      | 1,625           | 0.073 | 0.835                    | 1.11                       | 73.7           | 13.2           | 0.18 |
| BL0035  | 1470         | NO3       | 2002 | 3.83          | 772                      | 2,954           | 0.069 | 0.772                    | 2.01                       | 93.1           | 26.0           | 0.28 |
| BL0035  | 1470         | NO3       | 2003 | 2.54          | 730                      | 1,855           | 0.069 | 0.730                    | 1.26                       | 59.4           | 17.3           | 0.29 |
| BL0035  | 1470         | NO3       | 2004 | 3.43          | 746                      | 2,558           | 0.069 | 0.746                    | 1.74                       | 68.8           | 23.3           | 0.34 |
| BL0035  | 1470         | TDP       | 1991 | 5.67          | 161                      | 912             | 0.075 | 0.161                    | 0.62                       | 105.1          | 38.6           | 0.37 |
| BL0035  | 1470         | TDP       | 1992 | 6.02          | 114                      | 688             | 0.075 | 0.114                    | 0.47                       | 77.2           | 40.9           | 0.53 |
| BL0035  | 1470         | TDP       | 1993 | 6.23          | 115                      | 714             | 0.075 | 0.115                    | 0.49                       | 97.2           | 42.4           | 0.44 |
| BL0035  | 1470         | TDP       | 1994 | 6.12          | 109                      | 668             | 0.075 | 0.109                    | 0.45                       | 83.7           | 41.6           | 0.50 |
| BL0035  | 1470         | TDP       | 1995 | 3.84          | 91                       | 349             | 0.075 | 0.091                    | 0.24                       | 77.2           | 26.1           | 0.34 |
| BL0035  | 1470         | TDP       | 1996 | 2.84          | 91                       | 258             | 0.075 | 0.091                    | 0.18                       | 63.6           | 19.3           | 0.30 |
| BL0035  | 1470         | TDP       | 1997 | 6.46          | 136                      | 881             | 0.075 | 0.136                    | 0.60                       | 80.1           | 43.9           | 0.55 |
| BL0035  | 1470         | TDP       | 1998 | 6.34          | 136                      | 859             | 0.075 | 0.136                    | 0.58                       | 81.2           | 43.1           | 0.53 |
| BL0035  | 1470         | TDP       | 1999 | 3.74          | 86                       | 323             | 0.075 | 0.086                    | 0.22                       | 75.5           | 25.4           | 0.34 |
| BL0035  | 1470         | TDP       | 2000 | 1.95          | 65                       | 127             | 0.075 | 0.065                    | 0.09                       | 73.7           | 13.2           | 0.18 |
| BL0035  | 1470         | TDP       | 2002 | 3.83          | 164                      | 628             | 0.116 | 0.164                    | 0.43                       | 93.1           | 26.0           | 0.28 |
| BL0035  | 1470         | TDP       | 2003 | 2.54          | 149                      | 380             | 0.116 | 0.149                    | 0.26                       | 59.4           | 17.3           | 0.29 |
| BL0035  | 1470         | TDP       | 2004 | 3.43          | 166                      | 569             | 0.116 | 0.166                    | 0.39                       | 68.8           | 23.3           | 0.34 |
| BL0035  | 1470         | TKN       | 2002 | 3.83          | 1,565                    | 5,991           | 0.094 | 1.565                    | 4.08                       | 93.1           | 26.0           | 0.28 |
| BL0035  | 1470         | TKN       | 2003 | 2.54          | 1,461                    | 3,712           | 0.094 | 1.461                    | 2.53                       | 59.4           | 17.3           | 0.29 |
| BL0035  | 1470         | TKN       | 2004 | 3.43          | 1,620                    | 5,554           | 0.094 | 1.620                    | 3.78                       | 68.8           | 23.3           | 0.34 |
| BL0035  | 1470         | TP        | 1991 | 5.67          | 841                      | 4,769           | 0.091 | 0.841                    | 3.24                       | 105.1          | 38.6           | 0.37 |
| BL0035  | 1470         | TP        | 1992 | 6.02          | 562                      | 3,382           | 0.091 | 0.562                    | 2.30                       | 77.2           | 40.9           | 0.53 |
| BL0035  | 1470         | TP        | 1993 | 6.23          | 539                      | 3,261           | 0.091 | 0.539                    | 2.22                       | 97.2           | 42.4           | 0.44 |
| BL0035  | 1470         | TP        | 1994 | 6.12          | 430                      | 2,630           | 0.091 | 0.430                    | 1.79                       | 83.7           | 41.6           | 0.50 |
| BL0035  | 1470         | TP        | 1995 | 3.84          | 405                      | 1,552           | 0.091 | 0.405                    | 1.06                       | 77.2           | 26.1           | 0.34 |
| BL0035  | 1470         | TP        | 1996 | 2.84          | 376                      | 1,069           | 0.091 | 0.376                    | 0.73                       | 63.6           | 19.3           | 0.30 |
| BL0035  | 1470         | TP        | 1997 | 6.46          | 654                      | 4,225           | 0.091 | 0.654                    | 2.87                       | 80.1           | 43.9           | 0.55 |
|         | M0.05077802  |           |      |               |                          |                 |       |                          | 100000 (10000)             |                |                |      |

| BL0035 | 1470 | TP  | 1998 | 6.34 | 604     | 3,827     | 0.091 | 0.604   | 2.60     | 81.2  | 43.1 | 0.53 |
|--------|------|-----|------|------|---------|-----------|-------|---------|----------|-------|------|------|
| BL0035 | 1470 | TP  | 1999 | 3.74 | 365     | 1,364     | 0.091 | 0.365   | 0.93     | 75.5  | 25.4 | 0.34 |
| BL0035 | 1470 | TP  | 2000 | 1.95 | 291     | 566       | 0.091 | 0.291   | 0.39     | 73.7  | 13.2 | 0.18 |
| BL0035 | 1470 | TP  | 2002 | 3.83 | 478     | 1,829     | 0.130 | 0.478   | 1.24     | 93.1  | 26.0 | 0.28 |
| BL0035 | 1470 | TP  | 2003 | 2.54 | 431     | 1,095     | 0.130 | 0.431   | 0.75     | 59.4  | 17.3 | 0.29 |
| BL0035 | 1470 | TP  | 2004 | 3.43 | 509     | 1,745     | 0.130 | 0.509   | 1.19     | 68.8  | 23.3 | 0.34 |
| BL0035 | 1470 | TSS | 1991 | 5.67 | 593,901 | 3,367,081 | 0.114 | 593.901 | 2,290.53 | 105.1 | 38.6 | 0.37 |
| BL0035 | 1470 | TSS | 1992 | 6.02 | 347,730 | 2,091,466 | 0.114 | 347.730 | 1,422.77 | 77.2  | 40.9 | 0.53 |
| BL0035 | 1470 | TSS | 1993 | 6.23 | 295,994 | 1,844,718 | 0.114 | 295.994 | 1,254.91 | 97.2  | 42.4 | 0.44 |
| BL0035 | 1470 | TSS | 1994 | 6.12 | 246,290 | 1,506,758 | 0.114 | 246.290 | 1,025.01 | 83.7  | 41.6 | 0.50 |
| BL0035 | 1470 | TSS | 1995 | 3.84 | 221,614 | 849,855   | 0.114 | 221.614 | 578.13   | 77.2  | 26.1 | 0.34 |
| BL0035 | 1470 | TSS | 1996 | 2.84 | 225,377 | 640,852   | 0.114 | 225.377 | 435.95   | 63.6  | 19.3 | 0.30 |
| BL0035 | 1470 | TSS | 1997 | 6.46 | 433,951 | 2,802,833 | 0.114 | 433.951 | 1,906.69 | 80.1  | 43.9 | 0.55 |
| BL0035 | 1470 | TSS | 1998 | 6.34 | 459,658 | 2,912,077 | 0.114 | 459.658 | 1,981.00 | 81.2  | 43.1 | 0.53 |
| BL0035 | 1470 | TSS | 1999 | 3.74 | 169,142 | 632,557   | 0.114 | 169.142 | 430.31   | 75.5  | 25.4 | 0.34 |
| BL0035 | 1470 | TSS | 2000 | 1.95 | 170,577 | 331,908   | 0.114 | 170.577 | 225.79   | 73.7  | 13.2 | 0.18 |
| BL0035 | 1470 | TSS | 2002 | 3.83 | 342,160 | 1,310,131 | 0.213 | 342.160 | 891.25   | 93.1  | 26.0 | 0.28 |
| BL0035 | 1470 | TSS | 2003 | 2.54 | 302,365 | 768,007   | 0.213 | 302.365 | 522.45   | 59.4  | 17.3 | 0.29 |
| BL0035 | 1470 | TSS | 2004 | 3.43 | 386,210 | 1,323,926 | 0.213 | 386.210 | 900.63   | 68.8  | 23.3 | 0.34 |

| Browns | Creek        |           |      |               |                          |                 |       |                          |                            |                |                |      |
|--------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site   | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| BR0003 | 7410         | NO3       | 2000 | 12.03         | 788                      | 9,483           | 0.045 | 0.788                    | 1.28                       | 79.1           | 16.2           | 0.21 |
| BR0003 | 7410         | NO3       | 2001 | 13.98         | 697                      | 9,750           | 0.039 | 0.697                    | 1.32                       | 88.1           | 18.9           | 0.21 |
| BR0003 | 7410         | NO3       | 2002 | 16.74         | 659                      | 11,026          | 0.039 | 0.659                    | 1.49                       | 104.6          | 22.6           | 0.22 |
| BR0003 | 7410         | NO3       | 2003 | 10.29         | 816                      | 8,395           | 0.039 | 0.816                    | 1.13                       | 73.4           | 13.9           | 0.19 |
| BR0003 | 7410         | NO3       | 2004 | 8.75          | 863                      | 7,554           | 0.039 | 0.863                    | 1.02                       | 76.3           | 11.8           | 0.15 |
| BR0003 | 7410         | TDP       | 1998 | 10.21         | 55                       | 557             | 0.067 | 0.055                    | 0.08                       | 86.0           | 13.8           | 0.16 |
| BR0003 | 7410         | TDP       | 1999 | 12.12         | 59                       | 718             | 0.067 | 0.059                    | 0.10                       | 86.5           | 16.4           | 0.19 |
| BR0003 | 7410         | TDP       | 2000 | 12.03         | 60                       | 722             | 0.067 | 0.060                    | 0.10                       | 79.1           | 16.2           | 0.21 |
| BR0003 | 7410         | TDP       | 2001 | 13.98         | 66                       | 921             | 0.067 | 0.066                    | 0.12                       | 88.1           | 18.9           | 0.21 |
| BR0003 | 7410         | TDP       | 2002 | 16.77         | 66                       | 1,110           | 0.067 | 0.066                    | 0.15                       | 104.6          | 22.6           | 0.22 |
| BR0003 | 7410         | TDP       | 2003 | 10.29         | 59                       | 603             | 0.067 | 0.059                    | 0.08                       | 73.4           | 13.9           | 0.19 |
| BR0003 | 7410         | TDP       | 2004 | 8.75          | 60                       | 526             | 0.087 | 0.060                    | 0.07                       | 76.3           | 11.8           | 0.15 |
| BR0003 | 7410         | TKN       | 2001 | 13.98         | 1,646                    | 23,020          | 0.071 | 1.646                    | 3.11                       | 88.1           | 18.9           | 0.21 |
| BR0003 | 7410         | TKN       | 2002 | 16.74         | 1,827                    | 30,588          | 0.071 | 1.827                    | 4.13                       | 104.6          | 22.6           | 0.22 |
| BR0003 | 7410         | TKN       | 2003 | 10.29         | 1,163                    | 11,968          | 0.071 | 1.163                    | 1.62                       | 73.4           | 13.9           | 0.19 |
| BR0003 | 7410         | TKN       | 2004 | 8.75          | 943                      | 8,248           | 0.071 | 0.943                    | 1.11                       | 76.3           | 11.8           | 0.15 |
| BR0003 | 7410         | TP        | 1998 | 10.21         | 187                      | 1,904           | 0.081 | 0.187                    | 0.26                       | 86.0           | 13.8           | 0.16 |
| BR0003 | 7410         | TP        | 1999 | 12.12         | 208                      | 2,523           | 0.081 | 0.208                    | 0.34                       | 86.5           | 16.4           | 0.19 |
| BR0003 | 7410         | TP        | 2000 | 12.03         | 231                      | 2,779           | 0.081 | 0.231                    | 0.38                       | 79.1           | 16.2           | 0.21 |
| BR0003 | 7410         | TP        | 2001 | 13.98         | 244                      | 3,413           | 0.081 | 0.244                    | 0.46                       | 88.1           | 18.9           | 0.21 |
| BR0003 | 7410         | TP        | 2002 | 16.77         | 245                      | 4,113           | 0.081 | 0.245                    | 0.56                       | 104.6          | 22.6           | 0.22 |
| BR0003 | 7410         | TP        | 2003 | 10.29         | 197                      | 2,032           | 0.081 | 0.197                    | 0.27                       | 73.4           | 13.9           | 0.19 |
| BR0003 | 7410         | TP        | 2004 | 8.75          | 167                      | 1,460           | 0.094 | 0.167                    | 0.20                       | 76.3           | 11.8           | 0.15 |
| BR0003 | 7410         | TSS       | 1998 | 10.21         | 49,908                   | 509,387         | 0.121 | 49.908                   | 68.74                      | 86.0           | 13.8           | 0.16 |
| BR0003 | 7410         | TSS       | 1999 | 12.12         | 84,072                   | 1,019,051       | 0.121 | 84.072                   | 137.52                     | 86.5           | 16.4           | 0.19 |
| BR0003 | 7410         | TSS       | 2000 | 12.03         | 87,914                   | 1,057,917       | 0.121 | 87.914                   | 142.77                     | 79.1           | 16.2           | 0.21 |
| BR0003 | 7410         | TSS       | 2001 | 13.98         | 120,852                  | 1,689,994       | 0.108 | 120.852                  | 228.07                     | 88.1           | 18.9           | 0.21 |
| BR0003 | 7410         | TSS       | 2002 | 16.74         | 131,969                  | 2,208,897       | 0.108 | 131.969                  | 298.10                     | 104.6          | 22.6           | 0.22 |
| BR0003 | 7410         | TSS       | 2003 | 10.29         | 73,041                   | 751,449         | 0.108 | 73.041                   | 101.41                     | 73.4           | 13.9           | 0.19 |
| BR0003 | 7410         | TSS       | 2004 | 8.75          | 46,556                   | 407,318         | 0.108 | 46.556                   | 54.97                      | 76.3           | 11.8           | 0.15 |

| Bassett | Creek        |           |      |               |                          |                 |       |                          |                            |                |                |      |
|---------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site    | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| BS0019  | 10370        | NO3       | 2001 | 52.00         | 413                      | 21,459          | 0.075 | 0.413                    | 2.07                       | 86.9           | 50.1           | 0.58 |
| BS0019  | 10370        | NO3       | 2002 | 51.72         | 422                      | 21,827          | 0.075 | 0.422                    | 2.10                       | 97.2           | 49.9           | 0.51 |
| BS0019  | 10370        | NO3       | 2003 | 32.18         | 420                      | 13,526          | 0.075 | 0.420                    | 1.30                       | 57.7           | 31.0           | 0.54 |
| BS0019  | 10370        | NO3       | 2004 | 27.62         | 353                      | 9,760           | 0.054 | 0.353                    | 0.94                       | 69.6           | 26.6           | 0.38 |
| BS0019  | 10370        | TDP       | 2001 | 52.00         | 48                       | 2,474           | 0.076 | 0.048                    | 0.24                       | 86.9           | 50.1           | 0.58 |
| BS0019  | 10370        | TDP       | 2002 | 51.72         | 48                       | 2,461           | 0.076 | 0.048                    | 0.24                       | 97.2           | 49.9           | 0.51 |
| BS0019  | 10370        | TDP       | 2003 | 32.18         | 48                       | 1,531           | 0.076 | 0.048                    | 0.15                       | 57.7           | 31.0           | 0.54 |
| BS0019  | 10370        | TDP       | 2004 | 27.62         | 44                       | 1,210           | 0.167 | 0.044                    | 0.12                       | 69.6           | 26.6           | 0.38 |
| BS0019  | 10370        | TKN       | 2004 | 27.62         | 1,471                    | 40,614          | 0.095 | 1.471                    | 3.92                       | 69.6           | 26.6           | 0.38 |
| BS0019  | 10370        | TP        | 2001 | 52.00         | 131                      | 6,808           | 0.058 | 0.131                    | 0.66                       | 86.9           | 50.1           | 0.58 |
| BS0019  | 10370        | TP        | 2002 | 51.72         | 131                      | 6,771           | 0.058 | 0.131                    | 0.65                       | 97.2           | 49.9           | 0.51 |
| BS0019  | 10370        | TP        | 2003 | 32.18         | 131                      | 4,213           | 0.058 | 0.131                    | 0.41                       | 57.7           | 31.0           | 0.54 |
| BS0019  | 10370        | TP        | 2004 | 27.62         | 195                      | 5,399           | 0.220 | 0.195                    | 0.52                       | 69.6           | 26.6           | 0.38 |
| BS0019  | 10370        | TSS       | 2001 | 52.00         | 33,457                   | 1,621,550       | 0.112 | 33.457                   | 156.37                     | 86.9           | 50.1           | 0.58 |
| BS0019  | 10370        | TSS       | 2002 | 51.72         | 33,180                   | 1,618,134       | 0.112 | 33.180                   | 156.04                     | 97.2           | 49.9           | 0.51 |
| BS0019  | 10370        | TSS       | 2003 | 32.18         | 30,201                   | 971,902         | 0.112 | 30.201                   | 93.72                      | 57.7           | 31.0           | 0.54 |
| BS0019  | 10370        | TSS       | 2004 | 27.62         | 82,260                   | 2,271,866       | 0.356 | 82.260                   | 219.08                     | 69.6           | 26.6           | 0.38 |

| Carver | Creek        |           |      |               |                          |                 |       |                          |                            |                |                |      |
|--------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site   | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| CA0017 | 21460        | NO3       | 1989 | 7.03          | 2,242                    | 15,759          | 0.066 | 2.242                    | 0.73                       |                |                |      |
| CA0017 | 21460        | NO3       | 1990 | 14.60         | 2,760                    | 40,298          | 0.066 | 2.760                    | 1.88                       | 84.4           | 6.8            | 0.08 |
| CA0017 | 21460        | NO3       | 1991 | 34.98         | 3,005                    | 105,130         | 0.066 | 3.005                    | 4.90                       | 105.1          | 16.3           | 0.16 |
| CA0017 | 21460        | NO3       | 1992 | 33.10         | 1,589                    | 52,594          | 0.068 | 1.589                    | 2.45                       | 77.2           | 15.4           | 0.20 |
| CA0017 | 21460        | NO3       | 1993 | 84.76         | 1,785                    | 151,260         | 0.068 | 1.785                    | 7.05                       | 97.2           | 39.5           | 0.41 |
| CA0017 | 21460        | NO3       | 1994 | 38.57         | 1,502                    | 57,923          | 0.068 | 1.502                    | 2.70                       | 83.7           | 18.0           | 0.21 |
| CA0017 | 21460        | NO3       | 1995 | 38.18         | 1,488                    | 56,798          | 0.068 | 1.488                    | 2.65                       | 77.2           | 17.8           | 0.23 |
| CA0017 | 21460        | NO3       | 1996 | 28.48         | 1,521                    | 43,323          | 0.068 | 1.521                    | 2.02                       | 63.6           | 13.3           | 0.21 |
| CA0017 | 21460        | NO3       | 1997 | 41.54         | 2,203                    | 91,530          | 0.059 | 2.203                    | 4.27                       | 80.1           | 19.4           | 0.24 |
| CA0017 | 21460        | NO3       | 1998 | 34.74         | 2,198                    | 76,358          | 0.059 | 2.198                    | 3.56                       | 81.2           | 16.2           | 0.20 |
| CA0017 | 21460        | NO3       | 1999 | 28.61         | 2,198                    | 62,882          | 0.059 | 2.198                    | 2.93                       | 75.5           | 13.3           | 0.18 |
| CA0017 | 21460        | NO3       | 2000 | 5.64          | 2,205                    | 12,444          | 0.059 | 2.205                    | 0.58                       | 73.7           | 2.6            | 0.04 |
| CA0017 | 21460        | NO3       | 2001 | 35.11         | 3,418                    | 119,999         | 0.101 | 3.418                    | 5.59                       | 85.5           | 16.4           | 0.19 |
| CA0017 | 21460        | NO3       | 2002 | 47.08         | 2,996                    | 141,038         | 0.101 | 2.996                    | 6.57                       | 93.1           | 21.9           | 0.24 |
| CA0017 | 21460        | TDP       | 1990 | 14.60         | 439                      | 6,405           | 0.045 | 0.439                    | 0.30                       | 84.4           | 6.8            | 0.08 |
| CA0017 | 21460        | TDP       | 1991 | 34.98         | 474                      | 16,578          | 0.045 | 0.474                    | 0.77                       | 105.1          | 16.3           | 0.16 |
| CA0017 | 21460        | TDP       | 1992 | 33.10         | 230                      | 7,613           | 0.055 | 0.230                    | 0.35                       | 77.2           | 15.4           | 0.20 |
| CA0017 | 21460        | TDP       | 1993 | 84.76         | 282                      | 23,938          | 0.055 | 0.282                    | 1.12                       | 97.2           | 39.5           | 0.41 |
| CA0017 | 21460        | TDP       | 1994 | 38.57         | 201                      | 7,767           | 0.055 | 0.201                    | 0.36                       | 83.7           | 18.0           | 0.21 |
| CA0017 | 21460        | TDP       | 1995 | 38.18         | 200                      | 7,640           | 0.055 | 0.200                    | 0.36                       | 77.2           | 17.8           | 0.23 |
| CA0017 | 21460        | TDP       | 1996 | 28.48         | 211                      | 6,000           | 0.055 | 0.211                    | 0.28                       | 63.6           | 13.3           | 0.21 |
| CA0017 | 21460        | TDP       | 1997 | 41.54         | 203                      | 8,430           | 0.064 | 0.203                    | 0.39                       | 80.1           | 19.4           | 0.24 |
| CA0017 | 21460        | TDP       | 1998 | 34.74         | 184                      | 6,406           | 0.064 | 0.184                    | 0.30                       | 81.2           | 16.2           | 0.20 |
| CA0017 | 21460        | TDP       | 1999 | 28.61         | 188                      | 5,374           | 0.064 | 0.188                    | 0.25                       | 75.5           | 13.3           | 0.18 |
| CA0017 | 21460        | TDP       | 2000 | 5.64          | 119                      | 670             | 0.064 | 0.119                    | 0.03                       | 73.7           | 2.6            | 0.04 |
| CA0017 | 21460        | TDP       | 2001 | 35.11         | 256                      | 8,971           | 0.076 | 0.256                    | 0.42                       | 85.5           | 16.4           | 0.19 |
| CA0017 | 21460        | TDP       | 2002 | 47.08         | 235                      | 11,083          | 0.076 | 0.235                    | 0.52                       | 93.1           | 21.9           | 0.24 |
| CA0017 | 21460        | TP        | 1989 | 7.03          | 870                      | 6,117           | 0.140 | 0.870                    | 0.29                       |                |                |      |
| CA0017 | 21460        | TP        | 1990 | 14.60         | 847                      | 12,371          | 0.140 | 0.847                    | 0.58                       | 84.4           | 6.8            | 0.08 |
| CA0017 | 21460        | TP        | 1991 | 34.98         | 695                      | 24,307          | 0.140 | 0.695                    | 1.13                       | 105.1          | 16.3           | 0.16 |
| CA0017 | 21460        | TP        | 1992 | 33.10         | 870                      | 28,796          | 0.246 | 0.870                    | 1.34                       | 77.2           | 15.4           | 0.20 |
| CA0017 | 21460        | TP        | 1993 | 84.76         | 970                      | 82,221          | 0.246 | 0.970                    | 3.83                       | 97.2           | 39.5           | 0.41 |
| CA0017 | 21460        | TP        | 1994 | 38.57         | 1,010                    | 38,957          | 0.246 | 1.010                    | 1.82                       | 83.7           | 18.0           | 0.21 |
| CA0017 | 21460        | TP        | 1995 | 38.18         | 915                      | 34,917          | 0.246 | 0.915                    | 1.63                       | 77.2           | 17.8           | 0.23 |
| CA0017 | 21460        | TP        | 1996 | 28.48         | 876                      | 24,958          | 0.246 | 0.876                    | 1.16                       | 63.6           | 13.3           | 0.21 |
| CA0017 | 21460        | TP        | 1997 | 41.54         | 905                      | 37,579          | 0.259 | 0.905                    | 1.75                       | 80.1           | 19.4           | 0.24 |
|        |              |           |      |               |                          |                 |       |                          |                            |                |                |      |

| CA0017 | 21460 | TP  | 1998 | 34.74 | 722     | 25,096     | 0.259 | 0.722   | 1.17     | 81.2  | 16.2 | 0.20 |
|--------|-------|-----|------|-------|---------|------------|-------|---------|----------|-------|------|------|
| CA0017 | 21460 | TP  | 1999 | 28.61 | 746     | 21,333     | 0.259 | 0.746   | 0.99     | 75.5  | 13.3 | 0.18 |
| CA0017 | 21460 | TP  | 2000 | 5.64  | 299     | 1,689      | 0.259 | 0.299   | 0.08     | 73.7  | 2.6  | 0.04 |
| CA0017 | 21460 | TP  | 2001 | 35.11 | 659     | 23,144     | 0.188 | 0.659   | 1.08     | 85.5  | 16.4 | 0.19 |
| CA0017 | 21460 | TP  | 2002 | 47.08 | 584     | 27,513     | 0.188 | 0.584   | 1.28     | 93.1  | 21.9 | 0.24 |
| CA0017 | 21460 | TSS | 1989 | 7.03  | 216,572 | 1,522,170  | 0.169 | 216.572 | 70.93    |       |      |      |
| CA0017 | 21460 | TSS | 1990 | 14.60 | 282,770 | 4,128,416  | 0.169 | 282.770 | 192.38   | 84.4  | 6.8  | 0.08 |
| CA0017 | 21460 | TSS | 1991 | 34.98 | 323,007 | 11,299,150 | 0.169 | 323.007 | 526.52   | 105.1 | 16.3 | 0.16 |
| CA0017 | 21460 | TSS | 1992 | 33.10 | 250,773 | 8,300,718  | 0.155 | 250.773 | 386.80   | 77.2  | 15.4 | 0.20 |
| CA0017 | 21460 | TSS | 1993 | 84.76 | 293,505 | 24,876,500 | 0.155 | 293.505 | 1,159.20 | 97.2  | 39.5 | 0.41 |
| CA0017 | 21460 | TSS | 1994 | 38.57 | 294,065 | 11,342,700 | 0.155 | 294.065 | 528.55   | 83.7  | 18.0 | 0.21 |
| CA0017 | 21460 | TSS | 1995 | 38.18 | 261,218 | 9,973,024  | 0.155 | 261.218 | 464.73   | 77.2  | 17.8 | 0.23 |
| CA0017 | 21460 | TSS | 1996 | 28.48 | 249,888 | 7,116,000  | 0.155 | 249.888 | 331.59   | 63.6  | 13.3 | 0.21 |
| CA0017 | 21460 | TSS | 1997 | 41.54 | 323,984 | 13,459,270 | 0.165 | 323.984 | 627.18   | 80.1  | 19.4 | 0.24 |
| CA0017 | 21460 | TSS | 1998 | 34.74 | 308,513 | 10,718,520 | 0.165 | 308.513 | 499.47   | 81.2  | 16.2 | 0.20 |
| CA0017 | 21460 | TSS | 1999 | 28.61 | 317,473 | 9,084,258  | 0.165 | 317.473 | 423.31   | 75.5  | 13.3 | 0.18 |
| CA0017 | 21460 | TSS | 2000 | 5.64  | 43,107  | 243,238    | 0.165 | 43.107  | 11.33    | 73.7  | 2.6  | 0.04 |
| CA0017 | 21460 | TSS | 2001 | 35.11 | 306,501 | 10,760,030 | 0.299 | 306.501 | 501.40   | 85.5  | 16.4 | 0.19 |
| CA0017 | 21460 | TSS | 2002 | 47.08 | 254,261 | 11,970,410 | 0.299 | 254.261 | 557.80   | 93.1  | 21.9 | 0.24 |

| Carnelia | 1 Mari       | ne Outlet |      |               |                          |                 |       |                          |                            |                |                |      |
|----------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site     | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| CM0030   | 7780         | NO3       | 2001 | 5.03          | 164                      | 826             | 0.292 | 0.164                    | 0.11                       | 88.1           | 6.5            | 0.07 |
| CM0030   | 7780         | NO3       | 2002 | 7.37          | 97                       | 714             | 0.120 | 0.097                    | 0.09                       | 104.6          | 9.5            | 0.09 |
| CM0030   | 7780         | NO3       | 2003 | 5.99          | 110                      | 660             | 0.070 | 0.110                    | 0.08                       | 73.4           | 7.7            | 0.10 |
| CM0030   | 7780         | NO3       | 2004 | 3.80          | 122                      | 464             | 0.120 | 0.122                    | 0.06                       | 76.3           | 4.9            | 0.06 |
| CM0030   | 7780         | TDP       | 1996 | 9.74          | 10                       | 96              | 0.100 | 0.010                    | 0.01                       | 81.5           | 12.5           | 0.15 |
| CM0030   | 7780         | TDP       | 1997 | 6.07          | 21                       | 127             | 0.373 | 0.021                    | 0.02                       | 72.8           | 7.8            | 0.11 |
| CM0030   | 7780         | TDP       | 1998 |               | 11                       | 45              | 0.127 | 0.011                    | 0.01                       | 86.0           | 0.0            | 0.00 |
| CM0030   | 7780         | TDP       | 2000 | 0.92          | 15                       | 13              | 0.114 | 0.015                    | 0.00                       | 79.1           | 1.2            | 0.02 |
| CM0030   | 7780         | TDP       | 2001 | 5.03          | 10                       | 50              | 0.050 | 0.010                    | 0.01                       | 88.1           | 6.5            | 0.07 |
| CM0030   | 7780         | TDP       | 2002 | 7.42          | 11                       | 85              | 0.067 | 0.011                    | 0.01                       | 104.6          | 9.5            | 0.09 |
| CM0030   | 7780         | TDP       | 2003 | 5.99          | 12                       | 73              | 0.114 | 0.012                    | 0.01                       | 73.4           | 7.7            | 0.10 |
| CM0030   | 7780         | TDP       | 2004 | 3.80          | 12                       | 47              | 0.114 | 0.012                    | 0.01                       | 76.3           | 4.9            | 0.06 |
| CM0030   | 7780         | TKN       | 2002 | 7.37          | 425                      | 3,134           | 0.030 | 0.425                    | 0.40                       | 104.6          | 9.5            | 0.09 |
| CM0030   | 7780         | TKN       | 2003 | 5.99          | 418                      | 2,502           | 0.030 | 0.418                    | 0.32                       | 73.4           | 7.7            | 0.10 |
| CM0030   | 7780         | TKN       | 2004 | 3.80          | 420                      | 1,596           | 0.030 | 0.420                    | 0.21                       | 76.3           | 4.9            | 0.06 |
| CM0030   | 7780         | TP        | 1996 | 9.74          | 16                       | 153             | 0.144 | 0.016                    | 0.02                       | 81.5           | 12.5           | 0.15 |
| CM0030   | 7780         | TP        | 1997 | 6.07          | 28                       | 170             | 0.233 | 0.028                    | 0.02                       | 72.8           | 7.8            | 0.11 |
| CM0030   | 7780         | TP        | 1998 | 4.21          | 22                       | 94              | 0.287 | 0.022                    | 0.01                       | 86.0           | 5.4            | 0.06 |
| CM0030   | 7780         | TP        | 2000 | 0.92          | 23                       | 21              | 0.088 | 0.023                    | 0.00                       | 79.1           | 1.2            | 0.02 |
| CM0030   | 7780         | TP        | 2001 | 5.03          | 23                       | 114             | 0.088 | 0.023                    | 0.01                       | 88.1           | 6.5            | 0.07 |
| CM0030   | 7780         | TP        | 2002 | 7.37          | 23                       | 167             | 0.088 | 0.023                    | 0.02                       | 104.6          | 9.5            | 0.09 |
| CM0030   | 7780         | TP        | 2003 | 5.99          | 23                       | 135             | 0.088 | 0.023                    | 0.02                       | 73.4           | 7.7            | 0.10 |
| CM0030   | 7780         | TP        | 2004 | 3.80          | 23                       | 86              | 0.088 | 0.023                    | 0.01                       | 76.3           | 4.9            | 0.06 |
| CM0030   | 7780         | TSS       | 1996 | 9.74          | 3,597                    | 35,054          | 0.108 | 3.597                    | 4.51                       | 81.5           | 12.5           | 0.15 |
| CM0030   | 7780         | TSS       | 1997 | 6.07          | 3,316                    | 20,115          | 0.335 | 3.316                    | 2.59                       | 72.8           | 7.8            | 0.11 |
| CM0030   | 7780         | TSS       | 1998 | 4.21          | 4,387                    | 18,462          | 0.416 | 4.387                    | 2.37                       | 86.0           | 5.4            | 0.06 |
| CM0030   | 7780         | TSS       | 2000 | 0.92          | 2,302                    | 2,125           | 0.110 | 2.302                    | 0.27                       | 79.1           | 1.2            | 0.02 |
| CM0030   | 7780         | TSS       | 2001 | 5.03          | 2,435                    | 12,253          | 0.110 | 2.435                    | 1.57                       | 88.1           | 6.5            | 0.07 |
| CM0030   | 7780         | TSS       | 2002 | 7.42          | 2,532                    | 18,776          | 0.106 | 2.532                    | 2.41                       | 104.6          | 9.5            | 0.09 |
| CM0030   | 7780         | TSS       | 2003 | 5.99          | 2,408                    | 14,419          | 0.110 | 2.408                    | 1.85                       | 73.4           | 7.7            | 0.10 |
| CM0030   | 7780         | TSS       | 2004 | 3.80          | 2,403                    | 9,131           | 0.110 | 2.403                    | 1.17                       | 76.3           | 4.9            | 0.06 |

| Cannon River<br>Site Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Conc    | Model-Mass (kg) | cv    | Model-<br>Conc | Model-<br>Yield | Precip<br>(cm) | Runoff<br>(cm) | RC   |
|-----------------------------------|-----------|------|---------------|---------|-----------------|-------|----------------|-----------------|----------------|----------------|------|
| 010440 047000                     | NOO       | 0000 | 705 50        | (ug/L)  | 0 470 477       | 0.004 | (mg/L)         | (kg/ha)         | 00.0           | 00.0           | 0.05 |
| CN0119 347000                     |           | 2000 | 705.58        | 4,930   | 3,478,177       | 0.034 | 4.930          | 10.02           | 80.2           | 20.3           | 0.25 |
| CN0119 347000                     |           |      | 1079.45       | 5,612   | 6,058,051       | 0.034 | 5.612          | 17.46           | 72.8           | 31.1           | 0.43 |
| CN0119 347000                     |           | 2002 |               | 4,451   | 3,157,380       | 0.034 | 4.451          | 9.10            | 104.3          | 20.4           | 0.20 |
| CN0119 347000                     |           | 2003 | 477.90        | 4,376   | 2,091,290       | 0.034 | 4.376          | 6.03            | 48.8           | 13.8           | 0.28 |
| CN0119 347000                     |           | 2004 | 905.23        | 4,931   | 4,463,489       | 0.034 | 4.931          | 12.86           | 87.7           | 26.1           | 0.30 |
| CN0119 347000                     |           | 2000 | 705.58        | 157     | 111,100         | 0.062 | 0.157          | 0.32            | 80.2           | 20.3           | 0.25 |
| CN0119 347000                     |           |      | 1079.00       | 163     | 175,812         | 0.058 | 0.163          | 0.51            | 72.8           | 31.1           | 0.43 |
| CN0119 347000                     |           | 2002 | 709.00        | 146     | 103,409         | 0.058 | 0.146          | 0.30            | 104.3          | 20.4           | 0.20 |
| CN0119 347000                     | D TDP     | 2003 | 478.00        | 140     | 66,702          | 0.058 | 0.140          | 0.19            | 48.8           | 13.8           | 0.28 |
| CN0119 347000                     |           | 2004 |               | 154     | 139,278         | 0.062 | 0.154          | 0.40            | 87.7           | 26.1           | 0.30 |
| CN0119 347000                     | ) TKN     | 2000 | 705.58        | 1,326   | 935,701         | 0.058 | 1.326          | 2.70            | 80.2           | 20.3           | 0.25 |
| CN0119 347000                     | ) TKN     | 2001 | 1079.45       | 1,463   | 1,579,512       | 0.058 | 1.463          | 4.55            | 72.8           | 31.1           | 0.43 |
| CN0119 347000                     | ) TKN     | 2002 | 709.43        | 1,170   | 830,215         | 0.058 | 1.170          | 2.39            | 104.3          | 20.4           | 0.20 |
| CN0119 347000                     | ) TKN     | 2003 | 477.90        | 1,044   | 498,827         | 0.058 | 1.044          | 1.44            | 48.8           | 13.8           | 0.28 |
| CN0119 347000                     | ) TKN     | 2004 | 905.23        | 1,327   | 1,201,500       | 0.058 | 1.327          | 3.46            | 87.7           | 26.1           | 0.30 |
| CN0119 347000                     | ) TP      | 2000 | 705.58        | 346     | 244,384         | 0.076 | 0.346          | 0.70            | 80.2           | 20.3           | 0.25 |
| CN0119 347000                     | ) TP      | 2001 | 1079.45       | 380     | 409,801         | 0.076 | 0.380          | 1.18            | 72.8           | 31.1           | 0.43 |
| CN0119 347000                     | ) TP      | 2002 | 709.43        | 298     | 211,672         | 0.076 | 0.298          | 0.61            | 104.3          | 20.4           | 0.20 |
| CN0119 347000                     | ) TP      | 2003 | 477.90        | 274     | 131,012         | 0.076 | 0.274          | 0.38            | 48.8           | 13.8           | 0.28 |
| CN0119 347000                     | ) TP      | 2004 | 905.23        | 339     | 306,700         | 0.076 | 0.339          | 0.88            | 87.7           | 26.1           | 0.30 |
| CN0119 347000                     | TSS       | 2000 | 705.58        | 117,210 | 82,700,892      | 0.149 | 117.210        | 238.33          | 80.2           | 20.3           | 0.25 |
| CN0119 347000                     | TSS       | 2001 | 1079.45       | 146,620 | 158,267,979     | 0.149 | 146.620        | 456.10          | 72.8           | 31.1           | 0.43 |
| CN0119 347000                     | TSS       | 2002 | 709.43        | 86,199  | 61,152,261      | 0.149 | 86.199         | 176.23          | 104.3          | 20.4           | 0.20 |
| CN0119 347000                     |           | 2003 | 477.90        | 72,661  | 34,724,529      | 0.149 | 72.661         | 100.07          | 48.8           | 13.8           | 0.28 |
| CN0119 347000                     |           | 2004 | 905.23        | 115,151 | 104,237,909     | 0.149 | 115.151        | 300.40          | 87.7           | 26.1           | 0.30 |

| Site<br>(n)   Area<br>(n)   Praimete<br>(n)   Yes<br>(n)   Piow<br>(n)   Nodel-<br>(ng/L)   Nodel-<br>(ng/L)   Precip<br>(ng/L)   Precip<br>(ng/L)   Runoff<br>(ng/L)   RC     CR0007   13300   NO3   1989   6.43   1.086   6.998   0.129   0.684   0.51   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -<                                                                                                                                                                                                                                                                  | Credit I | River |           |      |       |         |                 |       |         |        |  |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----------|------|-------|---------|-----------------|-------|---------|--------|--|----|
| CR0007 13300 NO3 1990 10.92 624 6.816 0.129 0.624 0.61   CR0007 13300 NO3 1991 13.48 608 8,194 0.129 0.608 0.62   CR0007 13300 NO3 1993 37.61 702 26,392 0.096 0.619 0.95   CR0007 13300 NO3 1994 25.50 619 12,078 0.096 0.619 0.91   CR0007 13300 NO3 1995 19.53 619 12,078 0.096 0.619 0.91   CR0007 13300 NO3 1997 28.46 7785 15,132 0.095 0.785 1.14   CR0007 13300 NO3 1997 28.47 785 15,132 0.096 0.112 0.201 0.16   CR0007 13300 TDP 1990 10.92 201 2,1767 0.095 0.785 1.14   CR0007 13300 TDP 1991 13.48 133 1,800 0.121 0.333 0.14                                                                                                                                                                                                                                                                                                        |          | Area  | Parameter | Year |       | Conc    | Model-Mass (kg) | cv    | Conc    | Yield  |  | RC |
| CR0007   13300   NC3   1991   13.48   608   6.194   0.129   0.608   0.62     CR0007   13300   NC3   1992   25.50   698   17,808   0.096   0.702   1.98     CR0007   13300   NC3   1993   37.61   702   26.382   0.096   0.616   0.95     CR0007   13300   NC3   1995   19.53   619   12.078   0.096   0.619   0.91     CR0007   13300   NC3   1995   19.53   619   12.078   0.096   0.630   0.75     CR0007   13300   NC3   1998   19.27   785   15.132   0.095   0.785   1.14     CR0007   13300   ND3   1999   27.36   796   21.767   0.095   0.796   1.64     CR0007   13300   TDP   1991   13.48   133   1.800   0.121   0.133   0.14     CR0007   13300   TDP   <                                                                                                                                                                             | CR0007   | 13300 | NO3       | 1989 | 6.43  | 1,088   | 6,998           | 0.129 | 1.088   | 0.53   |  |    |
| CR0007 13300 NO3 1992 25 698 17,808 0.096 0.688 1.34   CR0007 13300 NO3 1994 20.54 616 12,655 0.096 0.616 0.95   CR0007 13300 NO3 1995 19.53 619 12,078 0.096 0.616 0.95   CR0007 13300 NO3 1997 28.46 788 22,438 0.095 0.785 1.64   CR0007 13300 NO3 1998 19.27 785 15,132 0.095 0.785 1.14   CR0007 13300 TDP 1999 27.36 796 21,767 0.095 0.796 1.64   CR0007 13300 TDP 1991 13.48 133 1.800 0.121 0.133 0.14   CR0007 13300 TDP 1992 25.50 99 2.530 0.99 0.91 0.121 0.211 0.133 0.14   CR0007 13300 TDP 1993 37.61 112 4.222 0.087                                                                                                                                                                                                                                                                                                              | CR0007   | 13300 | NO3       | 1990 | 10.92 | 624     | 6,816           | 0.129 | 0.624   | 0.51   |  |    |
| CR0007   13300   NG3   1993   37.61   702   26.392   0.096   0.702   1.98     CR0007   13300   NG3   1994   20.54   616   12.655   0.096   0.616   0.95     CR0007   13300   NG3   1995   15.52   630   9.958   0.096   0.619   0.91     CR0007   13300   NG3   1998   19.27   785   15.132   0.095   0.785   1.14     CR0007   13300   NG3   1999   10.32   201   2.190   0.121   0.201   0.16     CR0007   13300   TDP   1991   13.48   133   1,800   0.121   0.201   0.16     CR0007   13300   TDP   1993   37.61   112   4.221   0.687   0.091   0.14     CR0007   13300   TDP   1993   37.61   112   4.22   0.687   0.091   0.14     CR0007   13300   TDP   1                                                                                                                                                                                 | CR0007   | 13300 | NO3       | 1991 | 13.48 | 608     | 8,194           | 0.129 | 0.608   | 0.62   |  |    |
| CR0007 13300 NO3 1994 20.54 616 12,655 0.096 0.616 0.95   CR0007 13300 NO3 1996 15.82 630 9.968 0.096 0.619 0.91   CR0007 13300 NO3 1997 28.46 788 22,436 0.095 0.788 1.69   CR0007 13300 NO3 1998 19.27 785 15,132 0.095 0.786 1.14   CR0007 13300 NO3 1999 27.36 785 21,767 0.095 0.786 1.64   CR0007 13300 TDP 1990 10.92 201 2,190 0.121 0.201 0.16   CR0007 13300 TDP 1992 25.50 99 2,530 0.087 0.091 0.14   CR0007 13300 TDP 1993 37.61 112 4,221 0.087 0.091 0.14   CR0007 13300 TDP 1995 19.53 84 1,638 0.87 0.091 0.14 <t< td=""><td>CR0007</td><td>13300</td><td>NO3</td><td>1992</td><td>25.50</td><td>698</td><td>17,808</td><td>0.096</td><td>0.698</td><td>1.34</td><td></td><td></td></t<>                                                                                                                                          | CR0007   | 13300 | NO3       | 1992 | 25.50 | 698     | 17,808          | 0.096 | 0.698   | 1.34   |  |    |
| CR0007 13300 NG3 1995 19.53 619 12.078 0.096 0.619 0.91   CR0007 13300 NG3 1996 15.82 630 9.958 0.096 0.630 0.75   CR0007 13300 NG3 1998 19.27 785 15.132 0.095 0.785 1.14   CR0007 13300 NG3 1999 27.36 796 21.767 0.095 0.796 1.64   CR0007 13300 TDP 1991 13.48 133 1,800 0.121 0.201 0.16   CR0007 13300 TDP 1993 37.61 112 4.221 0.087 0.099 0.14   CR0007 13300 TDP 1993 37.61 112 4.221 0.087 0.084 0.12   CR0007 13300 TDP 1995 19.53 84 1.638 0.087 0.080 0.09   CR0007 13300 TDP 1995 19.53 84 1.638 0.087 0.080 0.09 <t< td=""><td>CR0007</td><td>13300</td><td>NO3</td><td>1993</td><td>37.61</td><td>702</td><td>26,392</td><td>0.096</td><td>0.702</td><td>1.98</td><td></td><td></td></t<>                                                                                                                                          | CR0007   | 13300 | NO3       | 1993 | 37.61 | 702     | 26,392          | 0.096 | 0.702   | 1.98   |  |    |
| CR0007 13300 NO3 1996 15.82 630 9,958 0.096 0.630 0.75   CR0007 13300 NO3 1997 28.46 788 22,436 0.095 0.788 1.69   CR0007 13300 NO3 1999 27.36 796 21,767 0.095 0.796 1.64   CR0007 13300 TDP 1991 10.92 201 2,190 0.121 0.201 0.16   CR0007 13300 TDP 1992 25.50 99 2,530 0.087 0.099 0.14   CR0007 13300 TDP 1992 25.50 99 2,530 0.087 0.099 0.14   CR0007 13300 TDP 1995 19.53 84 1,638 0.087 0.084 0.12   CR0007 13300 TDP 1995 19.53 84 1,638 0.087 0.084 0.12   CR0007 13300 TDP 1996 15.82 80 1,262 0.080 0.09   CR0007 1                                                                                                                                                                                                                                                                                                                   | CR0007   | 13300 | NO3       | 1994 | 20.54 | 616     | 12,655          | 0.096 | 0.616   | 0.95   |  |    |
| CR0007 13300 NO3 1997 28.46 788 22,436 0.095 0.785 1.14   CR0007 13300 NO3 1998 19.27 785 15,132 0.095 0.785 1.14   CR0007 13300 ND9 10.92 201 2,190 0.121 0.201 0.16   CR0007 13300 TDP 1990 10.92 201 2,190 0.121 0.133 0.14   CR0007 13300 TDP 1991 13.48 133 1,800 0.087 0.099 0.19   CR0007 13300 TDP 1993 3.61 112 4.221 0.087 0.0112 0.32   CR0007 13300 TDP 1995 19.53 84 1,638 0.087 0.084 0.12   CR0007 13300 TDP 1996 15.82 80 1,262 0.87 0.080 0.09   CR0007 13300 TDP 1997 28.46 109 3,092 0.75 0.105 0.15   CR0007 <td< td=""><td>CR0007</td><td>13300</td><td>NO3</td><td>1995</td><td>19.53</td><td>619</td><td>12,078</td><td>0.096</td><td>0.619</td><td>0.91</td><td></td><td></td></td<>                                                                                                                                       | CR0007   | 13300 | NO3       | 1995 | 19.53 | 619     | 12,078          | 0.096 | 0.619   | 0.91   |  |    |
| CR0007 13300 NO3 1998 19.27 785 15,132 0.095 0.785 1.14   CR0007 13300 ND3 1999 27.36 796 21,767 0.095 0.785 1.64   CR0007 13300 TDP 1990 10.92 201 2,160 0.121 0.201 0.16   CR0007 13300 TDP 1992 25.50 99 2,530 0.087 0.099 0.19   CR0007 13300 TDP 1992 25.54 91 1.861 0.087 0.091 0.14   CR0007 13300 TDP 1995 19.53 84 1.638 0.87 0.084 0.12   CR0007 13300 TDP 1996 15.82 80 1.262 0.087 0.080 0.09   CR0007 13300 TDP 1996 15.82 80 1.262 0.075 0.105 0.15   CR0007 13300 TDP 1996 15.82 80 1.262 0.075 0.112 0.23   CR00                                                                                                                                                                                                                                                                                                                   | CR0007   | 13300 | NO3       | 1996 | 15.82 | 630     | 9,958           | 0.096 | 0.630   | 0.75   |  |    |
| CR0007 13300 NO3 1999 27.36 796 21,767 0.095 0.796 1.64   CR0007 13300 TDP 1990 10.92 201 2,190 0.121 0.201 0.16   CR0007 13300 TDP 1991 13.48 133 1,800 0.121 0.133 0.14   CR0007 13300 TDP 1992 25.50 99 2,530 0.087 0.099 0.19   CR0007 13300 TDP 1994 20.54 91 1,861 0.087 0.084 0.12   CR0007 13300 TDP 1995 19.53 84 1,638 0.087 0.080 0.09   CR0007 13300 TDP 1996 15.82 80 1,262 0.087 0.080 0.09   CR0007 13300 TDP 1998 19.27 105 2,017 0.075 0.105 0.15   CR0007 13300 TDP 1999 27.36 112 3,075 0.112 0.570 0.58   CR                                                                                                                                                                                                                                                                                                                   | CR0007   | 13300 | NO3       | 1997 | 28.46 | 788     | 22,436          | 0.095 | 0.788   | 1.69   |  |    |
| CR0007 13300 TDP 1990 10.92 201 2,190 0.121 0.201 0.16   CR0007 13300 TDP 1991 13.48 133 1,800 0.121 0.133 0.14   CR0007 13300 TDP 1992 25.50 99 2,630 0.087 0.099 0.19   CR0007 13300 TDP 1993 37.61 112 4,221 0.087 0.091 0.14   CR0007 13300 TDP 1995 19.53 84 1,638 0.087 0.084 0.12   CR0007 13300 TDP 1996 15.82 80 1,262 0.087 0.080 0.09   CR0007 13300 TDP 1996 15.82 80 1,262 0.075 0.105 0.15   CR0007 13300 TDP 1998 19.27 105 2,017 0.075 0.112 0.23   CR0007 13300 TP 1999 10.92 548 5,979 0.112 0.548 0.45   CR00                                                                                                                                                                                                                                                                                                                   | CR0007   | 13300 | NO3       | 1998 | 19.27 | 785     | 15,132          | 0.095 | 0.785   | 1.14   |  |    |
| CR0007 13300 TDP 1991 13.48 133 1,800 0.121 0.133 0.14   CR0007 13300 TDP 1992 25.50 99 2,530 0.087 0.099 0.19   CR0007 13300 TDP 1993 37.61 112 4,221 0.087 0.112 0.32   CR0007 13300 TDP 1994 20.54 91 1,861 0.087 0.091 0.14   CR0007 13300 TDP 1995 19.53 84 1,638 0.087 0.084 0.12   CR0007 13300 TDP 1996 15.82 80 1,262 0.087 0.080 0.09   CR0007 13300 TDP 1998 19.7 105 2,017 0.75 0.105 0.15   CR0007 13300 TP 1999 27.36 112 3,075 0.75 0.112 0.23   CR0007 13300 TP 1999 10.92 548 5,979 0.112 0.548 0.45   CR0007 </td <td>CR0007</td> <td>13300</td> <td>NO3</td> <td>1999</td> <td>27.36</td> <td>796</td> <td>21,767</td> <td>0.095</td> <td>0.796</td> <td>1.64</td> <td></td> <td></td>                                                                                                                                          | CR0007   | 13300 | NO3       | 1999 | 27.36 | 796     | 21,767          | 0.095 | 0.796   | 1.64   |  |    |
| CR000713300TDP199225.50992,5300.0870.0990.19CR000713300TDP199337.611124,2210.0870.1120.32CR000713300TDP199420.54911,6610.0870.0910.14CR000713300TDP199519.538441,6630.0870.0800.09CR000713300TDP199615.82801,2620.0870.0800.09CR000713300TDP199819.271052,0170.0750.1050.15CR000713300TDP199819.271052,0170.0750.1050.15CR000713300TDP199927.361123,0770.1120.4780.23CR000713300TP199910.925485,9790.1120.5480.45CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199225.502426,1800.0740.2180.34CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199615.821943,0700.0740.2000.29CR000713300 <td>CR0007</td> <td>13300</td> <td>TDP</td> <td>1990</td> <td>10.92</td> <td>201</td> <td>2,190</td> <td>0.121</td> <td>0.201</td> <td>0.16</td> <td></td> <td></td>                      | CR0007   | 13300 | TDP       | 1990 | 10.92 | 201     | 2,190           | 0.121 | 0.201   | 0.16   |  |    |
| CR0007 13300 TDP 1993 37.61 112 4,221 0.087 0.112 0.32   CR0007 13300 TDP 1994 20.54 91 1,861 0.087 0.091 0.14   CR0007 13300 TDP 1995 19.53 84 1,638 0.087 0.084 0.12   CR0007 13300 TDP 1996 15.82 80 1,262 0.087 0.080 0.09   CR0007 13300 TDP 1998 19.27 105 2,017 0.075 0.105 0.15   CR0007 13300 TDP 1998 19.27 105 2,017 0.075 0.112 0.23   CR0007 13300 TDP 1999 27.36 112 3,075 0.75 0.112 0.23   CR0007 13300 TP 1990 10.92 548 5,979 0.112 0.548 0.45   CR0007 13300 TP 1991 13.48 570 7,690 0.112 0.570 0.58   CR000                                                                                                                                                                                                                                                                                                                   | CR0007   | 13300 | TDP       | 1991 | 13.48 | 133     | 1,800           | 0.121 | 0.133   | 0.14   |  |    |
| CR000713300TDP199420.54911,8610.0870.0910.14CR000713300TDP199519.53841,6380.0870.0840.12CR000713300TDP199615.82801,2620.0870.0800.09CR000713300TDP199615.82801,2620.0870.1050.15CR000713300TDP199819.271052,0170.0750.1050.15CR000713300TDP199927.361123,0750.0750.1120.23CR000713300TP199927.361123,0750.0750.1120.23CR000713300TP199010.925485,9790.1120.5480.45CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199337.6127910,4900.0740.2420.46CR000713300TP199337.6127910,4900.0740.2180.34CR000713300TP199519.532003,8970.0740.2180.34CR000713300TP199519.532003,8970.0740.2040.29CR000713300TP199619.272825,4330.0880.2820.41CR000713300 <td>CR0007</td> <td>13300</td> <td>TDP</td> <td>1992</td> <td>25.50</td> <td>99</td> <td>2,530</td> <td>0.087</td> <td>0.099</td> <td>0.19</td> <td></td> <td></td>                        | CR0007   | 13300 | TDP       | 1992 | 25.50 | 99      | 2,530           | 0.087 | 0.099   | 0.19   |  |    |
| CR000713300TDP199519.53841,6380.0870.0840.12CR000713300TDP199615.82801,2620.0870.0800.09CR000713300TDP199728.461093,0920.0750.1090.23CR000713300TDP199819.271052,0170.0750.1050.15CR000713300TDP199927.361123,0750.0750.1120.23CR000713300TP199927.361123,0770.1120.4780.23CR000713300TP199925.485,9790.1120.5480.45CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199337.6127910,4900.0740.2420.46CR000713300TP199337.6127910,4900.0740.2180.34CR000713300TP199420.542184,4810.0740.22180.43CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP <td>CR0007</td> <td>13300</td> <td>TDP</td> <td>1993</td> <td>37.61</td> <td>112</td> <td>4,221</td> <td>0.087</td> <td>0.112</td> <td>0.32</td> <td></td> <td></td>                      | CR0007   | 13300 | TDP       | 1993 | 37.61 | 112     | 4,221           | 0.087 | 0.112   | 0.32   |  |    |
| CR000713300TDP199615.82801,2620.0870.0800.09CR000713300TDP199728.461093,0920.0750.1090.23CR000713300TDP199819.271052,0170.0750.1050.15CR000713300TDP199927.361123,0750.0750.1120.23CR000713300TP19996.434783,0770.1120.4780.23CR000713300TP199010.925485,9790.1120.5480.45CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199225.502426,1800.0740.2420.46CR000713300TP199337.6127910,4900.0740.2790.79CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199819.272825,4330.0880.2960.63CR000713300TP199819.272825,4330.0880.3020.62CR000713300                                                                                                                                                                                             | CR0007   | 13300 | TDP       | 1994 | 20.54 | 91      | 1,861           | 0.087 | 0.091   | 0.14   |  |    |
| CR000713300TDP199728.461093,0920.0750.1090.23CR000713300TDP199819.271052,0170.0750.1050.15CR000713300TDP199927.361123,0750.0750.1120.23CR000713300TP19896.434783,0770.1120.4780.23CR000713300TP199010.925485,9790.1120.5480.45CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199225.502426,1800.0740.2420.46CR000713300TP199337.6127910,4900.0740.2180.34CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.1940.23CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199819.272825,4330.0880.2960.63CR000713300                                                                                                                                                                                             | CR0007   | 13300 | TDP       | 1995 | 19.53 | 84      | 1,638           | 0.087 | 0.084   | 0.12   |  |    |
| CR000713300TDP199819.271052.0170.0750.1050.15CR000713300TDP199927.361123.0750.0750.1120.23CR000713300TP19896.434783.0770.1120.4780.23CR000713300TP199010.925485.9790.1120.5480.45CR000713300TP199113.485707.6900.1120.5700.58CR000713300TP199225.502426.1800.0740.2420.46CR000713300TP199337.6127910.4900.0740.2180.34CR000713300TP199420.542184.4810.0740.2000.29CR000713300TP199519.532003.8970.0740.2000.29CR000713300TP199615.821943.0700.0740.1940.23CR000713300TP199615.821943.0700.0740.2960.63CR000713300TP199819.272825.4330.0880.2820.41CR000713300TP199927.363028.2670.0880.3020.62CR000713300TP199927.363028.2670.182158.71776.79CR000713300 <td>CR0007</td> <td>13300</td> <td>TDP</td> <td>1996</td> <td>15.82</td> <td>80</td> <td>1,262</td> <td>0.087</td> <td>0.080</td> <td>0.09</td> <td></td> <td></td>                       | CR0007   | 13300 | TDP       | 1996 | 15.82 | 80      | 1,262           | 0.087 | 0.080   | 0.09   |  |    |
| CR000713300TDP199927.361123,0750.0750.1120.23CR000713300TP19896.434783,0770.1120.4780.23CR000713300TP199010.925485,9790.1120.5480.45CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199225.502426,1800.0740.2420.46CR000713300TP199337.6127910,4900.0740.2790.79CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.3020.62CR000713300TP199927.363028,2670.0880.3020.62CR000713300TP199927.363028,2670.182158.71776.79CR000713300TP199910.92195,7062,136,5550.182195.706160.64CR0007<                                                                                                                                                                                    | CR0007   | 13300 | TDP       | 1997 | 28.46 | 109     | 3,092           | 0.075 | 0.109   | 0.23   |  |    |
| CR000713300TP19896.434783,0770.1120.4780.23CR000713300TP199010.925485,9790.1120.5480.45CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199225.502426,1800.0740.2420.46CR000713300TP199337.6127910,4900.0740.2790.79CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2820.41CR000713300TP199819.272825,4330.0880.3020.62CR000713300TP199927.363028,2670.0880.3020.62CR000713300TP199927.363028,2670.0880.3020.62CR000713300TPS19896.43158,7171,021,2560.182158,71776.79CR000713                                                                                                                                                                                        | CR0007   | 13300 | TDP       | 1998 | 19.27 | 105     | 2,017           | 0.075 | 0.105   | 0.15   |  |    |
| CR000713300TP199010.925485,9790.1120.5480.45CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199225.502426,1800.0740.2420.46CR000713300TP199337.6127910,4900.0740.2790.79CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.2820.41CR000713300TP199927.363028,2670.0880.3020.62CR000713300TP199927.363028,2670.0880.3020.62CR000713300TS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13 <td>CR0007</td> <td>13300</td> <td>TDP</td> <td>1999</td> <td>27.36</td> <td>112</td> <td>3,075</td> <td>0.075</td> <td>0.112</td> <td>0.23</td> <td></td> <td></td> | CR0007   | 13300 | TDP       | 1999 | 27.36 | 112     | 3,075           | 0.075 | 0.112   | 0.23   |  |    |
| CR000713300TP199113.485707,6900.1120.5700.58CR000713300TP199225.502426,1800.0740.2420.46CR000713300TP199337.6127910,4900.0740.2790.79CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.3020.62CR000713300TP199927.363028,2670.0880.3020.62CR000713300TP199927.363028,2670.0880.3020.62CR000713300TS19896.43158,7171,021,2560.182158.71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                  | CR0007   | 13300 | TP        | 1989 | 6.43  | 478     | 3,077           | 0.112 | 0.478   | 0.23   |  |    |
| CR000713300TP199225.502426,1800.0740.2420.46CR000713300TP199337.6127910,4900.0740.2790.79CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.2820.41CR000713300TP199927.363028,2670.0880.3020.62CR000713300TS19896.43158,7171,021,2560.182158.71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                          | CR0007   | 13300 | TP        | 1990 | 10.92 | 548     | 5,979           | 0.112 | 0.548   | 0.45   |  |    |
| CR000713300TP199337.6127910,4900.0740.2790.79CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.2820.41CR000713300TP199927.363028,2670.0880.3020.62CR000713300TS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                      | CR0007   | 13300 | TP        | 1991 | 13.48 | 570     | 7,690           | 0.112 | 0.570   | 0.58   |  |    |
| CR000713300TP199420.542184,4810.0740.2180.34CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.2820.41CR000713300TP199927.363028,2670.0880.3020.62CR000713300TS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                                                                   | CR0007   | 13300 | TP        | 1992 |       | 242     | 6,180           | 0.074 | 0.242   | 0.46   |  |    |
| CR000713300TP199519.532003,8970.0740.2000.29CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.2820.41CR000713300TP199927.363028,2670.0880.3020.62CR000713300TSS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                                                                                                              | CR0007   | 13300 | TP        | 1993 | 37.61 | 279     | 10,490          | 0.074 | 0.279   | 0.79   |  |    |
| CR000713300TP199615.821943,0700.0740.1940.23CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.2820.41CR000713300TP199927.363028,2670.0880.3020.62CR000713300TSS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CR0007   | 13300 | TP        | 1994 | 20.54 | 218     | 4,481           | 0.074 | 0.218   | 0.34   |  |    |
| CR000713300TP199728.462968,4160.0880.2960.63CR000713300TP199819.272825,4330.0880.2820.41CR000713300TP199927.363028,2670.0880.3020.62CR000713300TSS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CR0007   | 13300 | TP        | 1995 | 19.53 | 200     | 3,897           | 0.074 | 0.200   | 0.29   |  |    |
| CR000713300TP199819.272825,4330.0880.2820.41CR000713300TP199927.363028,2670.0880.3020.62CR000713300TSS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CR0007   | 13300 | TP        | 1996 | 15.82 | 194     | 3,070           | 0.074 | 0.194   | 0.23   |  |    |
| CR000713300TP199927.363028,2670.0880.3020.62CR000713300TSS19896.43158,7171,021,2560.182158.71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CR0007   | 13300 | TP        | 1997 | 28.46 | 296     | 8,416           | 0.088 | 0.296   | 0.63   |  |    |
| CR000713300TSS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CR0007   | 13300 | TP        | 1998 | 19.27 | 282     | 5,433           | 0.088 | 0.282   | 0.41   |  |    |
| CR000713300TSS19896.43158,7171,021,2560.182158,71776.79CR000713300TSS199010.92195,7062,136,5550.182195.706160.64CR000713300TSS199113.48205,3212,768,1540.182205.321208.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CR0007   | 13300 | TP        | 1999 | 27.36 | 302     | 8,267           | 0.088 | 0.302   | 0.62   |  |    |
| CR0007 13300 TSS 1990 10.92 195,706 2,136,555 0.182 195.706 160.64<br>CR0007 13300 TSS 1991 13.48 205,321 2,768,154 0.182 205.321 208.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CR0007   | 13300 | TSS       | 1989 | 6.43  | 158,717 |                 | 0.182 | 158.717 | 76.79  |  |    |
| CR0007 13300 TSS 1991 13.48 205,321 2,768,154 0.182 205.321 208.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CR0007   | 13300 | TSS       | 1990 | 10.92 |         |                 | 0.182 | 195.706 | 160.64 |  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CR0007   | 13300 | TSS       | 1991 | 13.48 | 205,321 | 2,768,154       | 0.182 | 205.321 | 208.13 |  |    |
| CR0007 13300 TSS 1992 25.50 72,649 1,852,560 0.113 72.649 139.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CR0007   | 13300 | TSS       | 1992 | 25.50 | 72,649  | 1,852,560       | 0.113 | 72.649  | 139.29 |  |    |

| CR0007 | 13300 | TSS | 1993 | 37.61 | 87,912  | 3,306,264 | 0.113 | 87.912  | 248.59 |      |      |      |
|--------|-------|-----|------|-------|---------|-----------|-------|---------|--------|------|------|------|
| CR0007 | 13300 | TSS | 1994 | 20.54 | 46,866  | 962,757   | 0.113 | 46.866  | 72.39  |      |      |      |
| CR0007 | 13300 | TSS | 1995 | 19.53 | 47,712  | 931,606   | 0.113 | 47.712  | 70.05  |      |      |      |
| CR0007 | 13300 | TSS | 1996 | 15.82 | 48,660  | 769,691   | 0.113 | 48.660  | 57.87  |      |      |      |
| CR0007 | 13300 | TSS | 1997 | 28.46 | 102,512 | 2,917,671 | 0.140 | 102.512 | 219.37 |      |      |      |
| CR0007 | 13300 | TSS | 1998 | 19.27 | 96,777  | 1,865,121 | 0.140 | 96.777  | 140.23 |      |      |      |
| CR0007 | 13300 | TSS | 1999 | 27.36 | 101,893 | 2,787,829 | 0.140 | 101.893 | 209.61 |      |      |      |
| CR0009 | 13300 | NO3 | 2001 | 20.18 | 1,331   | 26,858    | 0.122 | 1.331   | 2.02   | 85.4 | 15.2 | 0.18 |
| CR0009 | 13300 | NO3 | 2003 | 16.66 | 1,210   | 20,160    | 0.122 | 1.210   | 1.52   | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | NO3 | 2003 | 16.68 | 1,027   | 17,120    | 0.092 | 1.027   | 1.29   | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | NO3 | 2004 | 10.97 | 940     | 10,319    | 0.092 | 0.940   | 0.78   | 83.6 | 8.2  | 0.10 |
| CR0009 | 13300 | TDP | 2001 | 20.18 | 115     | 2,316     | 0.104 | 0.115   | 0.17   | 85.4 | 15.2 | 0.18 |
| CR0009 | 13300 | TDP | 2003 | 16.66 | 104     | 1,740     | 0.104 | 0.104   | 0.13   | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | TDP | 2003 | 16.68 | 107     | 1,792     | 0.143 | 0.107   | 0.13   | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | TDP | 2004 | 10.97 | 87      | 949       | 0.143 | 0.087   | 0.07   | 83.6 | 8.2  | 0.10 |
| CR0009 | 13300 | TKN | 2003 | 16.68 | 1,383   | 23,068    | 0.077 | 1.383   | 1.73   | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | TKN | 2004 | 10.97 | 1,158   | 12,709    | 0.077 | 1.158   | 0.96   | 83.6 | 8.2  | 0.10 |
| CR0009 | 13300 | TP  | 2001 | 20.18 | 259     | 5,218     | 0.091 | 0.259   | 0.39   | 85.4 | 15.2 | 0.18 |
| CR0009 | 13300 | TP  | 2003 | 16.66 | 240     | 3,995     | 0.091 | 0.240   | 0.30   | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | TP  | 2003 | 16.68 | 285     | 4,750     | 0.079 | 0.285   | 0.36   | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | TP  | 2004 | 10.97 | 236     | 2,585     | 0.079 | 0.236   | 0.19   | 83.6 | 8.2  | 0.10 |
| CR0009 | 13300 | TSS | 2001 | 20.18 | 103,840 | 2,095,434 | 0.190 | 103.840 | 157.55 | 85.4 | 15.2 | 0.18 |
| CR0009 | 13300 | TSS | 2003 | 16.66 | 85,335  | 1,421,658 | 0.190 | 85.335  | 106.89 | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | TSS | 2003 | 16.68 | 120,828 | 2,015,168 | 0.386 | 120.828 | 151.52 | 64.5 | 12.5 | 0.19 |
| CR0009 | 13300 | TSS | 2004 | 10.97 | 66,100  | 725,249   | 0.386 | 66.100  | 54.53  | 83.6 | 8.2  | 0.10 |
|        |       |     |      |       |         |           |       |         |        |      |      |      |

| Crow Riv | /er          |           |      |               |                          |                 |       |                          |                            |                |                |      |
|----------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site     | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| CW0231   | 679000       | NO3       | 2000 | 213.40        | 2,499                    | 533,217         | 0.074 | 2.499                    | 0.79                       | 49.5           | 3.1            | 0.06 |
| CW0231   | 679000       | NO3       | 2001 | 1123.60       | 2,730                    | 3,067,751       | 0.064 | 2.730                    | 4.52                       | 68.6           | 16.5           | 0.24 |
| CW0231   | 679000       | NO3       | 2002 | 1595.09       | 1,524                    | 2,430,971       | 0.064 | 1.524                    | 3.58                       | 116.3          | 23.5           | 0.20 |
| CW0231   | 679000       | NO3       | 2003 | 850.70        | 2,090                    | 1,778,577       | 0.064 | 2.090                    | 2.62                       | 62.7           | 12.5           | 0.20 |
| CW0231   | 679000       | NO3       | 2004 | 713.63        | 2,316                    | 1,653,005       | 0.074 | 2.316                    | 2.43                       | 75.6           | 10.5           | 0.14 |
| CW0231   | 679000       | TDP       | 2000 | 213.40        | 248                      | 52,988          | 0.061 | 0.248                    | 0.08                       | 49.5           | 3.1            | 0.06 |
| CW0231   | 679000       | TDP       | 2001 | 1123.60       | 216                      | 242,618         | 0.059 | 0.216                    | 0.36                       | 68.6           | 16.5           | 0.24 |
| CW0231   | 679000       | TDP       | 2002 | 1595.09       | 214                      | 341,290         | 0.059 | 0.214                    | 0.50                       | 116.3          | 23.5           | 0.20 |
| CW0231   | 679000       | TDP       | 2003 | 850.70        | 233                      | 198,118         | 0.059 | 0.233                    | 0.29                       | 62.7           | 12.5           | 0.20 |
| CW0231   | 679000       | TDP       | 2004 | 713.63        | 203                      | 144,981         | 0.061 | 0.203                    | 0.21                       | 75.6           | 10.5           | 0.14 |
| CW0231   | 679000       | TKN       | 2000 | 213.40        | 1,537                    | 327,953         | 0.030 | 1.537                    | 0.48                       | 49.5           | 3.1            | 0.06 |
| CW0231   | 679000       | TKN       | 2001 | 1123.62       | 1,552                    | 1,743,300       | 0.030 | 1.552                    | 2.57                       | 68.6           | 16.5           | 0.24 |
| CW0231   | 679000       | TKN       | 2002 | 1595.09       | 1,473                    | 2,350,068       | 0.030 | 1.473                    | 3.46                       | 116.3          | 23.5           | 0.20 |
| CW0231   | 679000       | TKN       | 2003 | 850.79        | 1,525                    | 1,297,169       | 0.030 | 1.525                    | 1.91                       | 62.7           | 12.5           | 0.20 |
| CW0231   | 679000       | TKN       | 2004 | 713.63        | 1,454                    | 1,037,762       | 0.030 | 1.454                    | 1.53                       | 75.6           | 10.5           | 0.14 |
| CW0231   | 679000       | TP        | 2000 | 213.40        | 359                      | 76,558          | 0.047 | 0.359                    | 0.11                       | 49.5           | 3.1            | 0.06 |
| CW0231   | 679000       | TP        | 2001 | 1123.62       | 347                      | 389,841         | 0.047 | 0.347                    | 0.57                       | 68.6           | 16.5           | 0.24 |
| CW0231   | 679000       | TP        | 2002 | 1595.09       | 314                      | 500,891         | 0.047 | 0.314                    | 0.74                       | 116.3          | 23.5           | 0.20 |
| CW0231   | 679000       | TP        | 2003 | 850.79        | 341                      | 290,239         | 0.047 | 0.341                    | 0.43                       | 62.7           | 12.5           | 0.20 |
| CW0231   | 679000       | TP        | 2004 | 713.63        | 320                      | 228,612         | 0.047 | 0.320                    | 0.34                       | 75.6           | 10.5           | 0.14 |
| CW0231   | 679000       | TSS       | 2000 | 213.40        | 47,734                   | 10,186,315      | 0.114 | 47.734                   | 15.00                      | 49.5           | 3.1            | 0.06 |
| CW0231   | 679000       | TSS       | 2001 | 1123.62       | 55,493                   | 62,353,448      | 0.114 | 55.493                   | 91.83                      | 68.6           | 16.5           | 0.24 |
| CW0231   | 679000       | TSS       | 2002 | 1595.09       | 63,108                   | 100,663,128     | 0.114 | 63.108                   | 148.25                     | 116.3          | 23.5           | 0.20 |
| CW0231   | 679000       | TSS       | 2003 | 850.79        | 61,064                   | 51,952,414      | 0.114 | 61.064                   | 76.51                      | 62.7           | 12.5           | 0.20 |
| CW0231   | 679000       | TSS       | 2004 | 713.63        | 58,644                   | 41,850,055      | 0.114 | 58.644                   | 61.63                      | 75.6           | 10.5           | 0.14 |

| Eagle C | reek         |           |      |               |                          |                 |       |                          |                            |                |                |      |
|---------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site    | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| EA0008  | 310          | NO3       | 2000 | 6.99          | 243                      | 1,697           | 0.102 | 0.243                    | 5.47                       | 64.2           | 225.4          | 3.51 |
| EA0008  | 310          | NO3       | 2004 | 7.80          | 244                      | 1,901           | 0.102 | 0.244                    | 6.13                       | 83.6           | 251.6          | 3.01 |
| EA0008  | 310          | TDP       | 2000 | 6.99          | 30                       | 210             | 0.271 | 0.030                    | 0.68                       | 64.2           | 225.4          | 3.51 |
| EA0008  | 310          | TDP       | 2001 | 8.78          | 18                       | 129             | 0.093 | 0.018                    | 0.42                       | 85.4           | 283.1          | 3.31 |
| EA0008  | 310          | TDP       | 2002 | 9.65          | 19                       | 179             | 0.093 | 0.019                    | 0.58                       | 105.9          | 311.2          | 2.94 |
| EA0008  | 310          | TDP       | 2003 | 7.00          | 17                       | 122             | 0.093 | 0.017                    | 0.39                       | 64.5           | 225.8          | 3.50 |
| EA0008  | 310          | TDP       | 2004 | 7.80          | 30                       | 232             | 0.271 | 0.030                    | 0.75                       | 83.6           | 251.6          | 3.01 |
| EA0008  | 310          | TKN       | 2003 | 7.00          | 334                      | 2,335           | 0.191 | 0.334                    | 7.53                       | 64.5           | 225.8          | 3.50 |
| EA0008  | 310          | TKN       | 2004 | 7.80          | 325                      | 2,534           | 0.191 | 0.325                    | 8.18                       | 83.6           | 251.6          | 3.01 |
| EA0008  | 310          | TP        | 2000 | 6.99          | 90                       | 630             | 0.209 | 0.090                    | 2.03                       | 64.2           | 225.4          | 3.51 |
| EA0008  | 310          | TP        | 2001 | 8.78          | 53                       | 462             | 0.096 | 0.053                    | 1.49                       | 85.4           | 283.1          | 3.31 |
| EA0008  | 310          | TP        | 2002 | 9.65          | 58                       | 559             | 0.096 | 0.058                    | 1.80                       | 105.9          | 311.2          | 2.94 |
| EA0008  | 310          | TP        | 2003 | 6.99          | 47                       | 327             | 0.096 | 0.047                    | 1.06                       | 64.5           | 225.5          | 3.50 |
| EA0008  | 310          | TP        | 2004 | 7.80          | 88                       | 689             | 0.209 | 0.088                    | 2.22                       | 83.6           | 251.6          | 3.01 |
| EA0008  | 310          | TSS       | 2000 | 6.99          | 21,756                   | 152,029         | 0.243 | 21.756                   | 490.42                     | 64.2           | 225.4          | 3.51 |
| EA0008  | 310          | TSS       | 2001 | 8.78          | 12,469                   | 109,418         | 0.147 | 12.469                   | 352.96                     | 85.4           | 283.1          | 3.31 |
| EA0008  | 310          | TSS       | 2002 | 9.65          | 11,552                   | 111,430         | 0.147 | 11.552                   | 359.45                     | 105.9          | 311.2          | 2.94 |
| EA0008  | 310          | TSS       | 2003 | 7.00          | 12,257                   | 85,778          | 0.147 | 12.257                   | 276.70                     | 64.5           | 225.8          | 3.50 |
| EA0008  | 310          | TSS       | 2004 | 7.80          | 21,189                   | 165,277         | 0.243 | 21.189                   | 533.15                     | 83.6           | 251.6          | 3.01 |

| Elm Cre | eek          |           |      |               |                          |                 |       |                          |                            |                |                |
|---------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|
| Site    | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) |
| EC0047  | 22140        | NO3       | 1995 | 43.34         | 147                      | 6,387           | 0.185 | 0.147                    | 0.29                       | 83.2           | 19.6           |
| EC0047  | 22140        | NO3       | 1996 | 37.02         | 136                      | 5,049           | 0.185 | 0.136                    | 0.23                       | 75.7           | 16.7           |
| EC0047  | 22140        | NO3       | 1997 | 33.49         | 402                      | 13,478          | 0.233 | 0.402                    | 0.61                       | 87.5           | 15.1           |
| EC0047  | 22140        | NO3       | 1998 | 21.58         | 459                      | 9,915           | 0.233 | 0.459                    | 0.45                       | 80.4           | 9.7            |
| EC0047  | 22140        | NO3       | 1999 | 36.85         | 379                      | 13,957          | 0.233 | 0.379                    | 0.63                       | 78.2           | 16.6           |
| EC0047  | 22140        | NO3       | 2000 | 10.10         | 473                      | 4,778           | 0.233 | 0.473                    | 0.22                       | 90.4           | 4.6            |
| EC0047  | 22140        | NO3       | 2001 | 51.36         | 1,079                    | 55,427          | 0.232 | 1.079                    | 2.50                       | 94.1           | 23.2           |
| EC0047  | 22140        | NO3       | 2002 | 86.19         | 624                      | 53,792          | 0.198 | 0.624                    | 2.43                       | 106.1          | 38.9           |
| EC0047  | 22140        | NO3       | 2003 | 40.28         | 611                      | 24,605          | 0.198 | 0.611                    | 1.11                       | 61.8           | 18.2           |
| EC0047  | 22140        | TDP       | 2001 | 53.16         | 151                      | 8,003           | 0.173 | 0.151                    | 0.36                       | 94.1           | 24.0           |
| EC0047  | 22140        | TDP       | 2002 | 86.19         | 153                      | 13,192          | 0.173 | 0.153                    | 0.60                       | 106.1          | 38.9           |
| EC0047  | 22140        | TDP       | 2003 | 40.30         | 151                      | 6,067           | 0.173 | 0.151                    | 0.27                       | 61.8           | 18.2           |
| EC0047  | 22140        | TDP       | 2004 | 33.82         | 147                      | 4,957           | 0.173 | 0.147                    | 0.22                       | 83.2           | 15.3           |
| EC0047  | 22140        | TKN       | 2001 | 53.16         | 1,222                    | 64,936          | 0.110 | 1.222                    | 2.93                       | 94.1           | 24.0           |
| EC0047  | 22140        | TKN       | 2002 | 86.19         | 1,282                    | 110,459         | 0.110 | 1.282                    | 4.99                       | 106.1          | 38.9           |
| EC0047  | 22140        | TKN       | 2003 | 40.30         | 1,276                    | 51,424          | 0.110 | 1.276                    | 2.32                       | 61.8           | 18.2           |
| EC0047  | 22140        | TKN       | 2004 | 33.82         | 1,236                    | 41,809          | 0.110 | 1.236                    | 1.89                       | 83.2           | 15.3           |
| EC0047  | 22140        | TP        | 1989 | 7.27          | 278                      | 2,019           | 0.275 | 0.278                    | 0.09                       |                |                |
| EC0047  | 22140        | TP        | 1990 | 22.19         | 304                      | 6,738           | 0.275 | 0.304                    | 0.30                       | 83.9           | 10.0           |
| EC0047  | 22140        | TP        | 1991 | 62.48         | 326                      | 20,372          | 0.275 | 0.326                    | 0.92                       | 123.8          | 28.2           |
| EC0047  | 22140        | TP        | 1992 | 34.71         | 151                      | 5,254           | 0.089 | 0.151                    | 0.24                       | 90.7           | 15.7           |
| EC0047  | 22140        | TP        | 1993 | 66.37         | 130                      | 8,661           | 0.089 | 0.130                    | 0.39                       | 93.9           | 30.0           |
| EC0047  | 22140        | TP        | 1994 | 37.11         | 145                      | 5,395           | 0.089 | 0.145                    | 0.24                       | 75.8           | 16.8           |
| EC0047  | 22140        | TP        | 1995 | 43.34         | 143                      | 6,212           | 0.089 | 0.143                    | 0.28                       | 83.2           | 19.6           |
| EC0047  | 22140        | TP        | 1996 | 37.02         | 138                      | 5,096           | 0.089 | 0.138                    | 0.23                       | 75.7           | 16.7           |
| EC0047  | 22140        | TP        | 1997 | 33.49         | 298                      | 9,971           | 0.128 | 0.298                    | 0.45                       | 87.5           | 15.1           |
| EC0047  | 22140        | TP        | 1998 | 21.58         | 298                      | 6,426           | 0.128 | 0.298                    | 0.29                       | 80.4           | 9.7            |
| EC0047  | 22140        | TP        | 1999 | 36.85         | 298                      | 10,972          | 0.128 | 0.298                    | 0.50                       | 78.2           | 16.6           |
| EC0047  | 22140        | TP        | 2000 | 10.10         | 298                      | 3,009           | 0.128 | 0.298                    | 0.14                       | 90.4           | 4.6            |
| EC0047  | 22140        | TP        | 2001 | 53.16         | 213                      | 11,346          | 0.106 | 0.213                    | 0.51                       | 94.1           | 24.0           |
| EC0047  | 22140        | TP        | 2001 | 51.36         | 1,082                    | 55,572          | 0.232 | 1.082                    | 2.51                       | 94.1           | 23.2           |
| EC0047  | 22140        | TP        | 2002 | 86.19         | 221                      | 19,036          | 0.106 | 0.221                    | 0.86                       | 106.1          | 38.9           |
| EC0047  | 22140        | TP        | 2002 | 86.19         | 241                      | 20,776          | 0.171 | 0.241                    | 0.94                       | 106.1          | 38.9           |
| EC0047  | 22140        | TP        | 2003 | 40.30         | 217                      | 8,754           | 0.106 | 0.217                    | 0.40                       | 61.8           | 18.2           |
| EC0047  | 22140        | TP        | 2003 | 40.28         | 237                      | 9,547           | 0.171 | 0.237                    | 0.43                       | 61.8           | 18.2           |
| EC0047  | 22140        | TP        | 2004 | 33.82         | 219                      | 7,418           | 0.106 | 0.219                    | 0.34                       | 83.2           | 15.3           |

| EC0047 | 22140 | TSS | 1989 | 7.27  | 45,037 | 327,250   | 0.160 | 45.037 | 14.78  |       |      |
|--------|-------|-----|------|-------|--------|-----------|-------|--------|--------|-------|------|
| EC0047 | 22140 | TSS | 1990 | 22.19 | 47,430 | 1,052,400 | 0.160 | 47.430 | 47.53  | 83.9  | 10.0 |
| EC0047 | 22140 | TSS | 1991 | 62.48 | 48,345 | 3,020,780 | 0.160 | 48.345 | 136.44 | 123.8 | 28.2 |
| EC0047 | 22140 | TSS | 1992 | 34.71 | 36,482 | 1,266,278 | 0.103 | 36.482 | 57.19  | 90.7  | 15.7 |
| EC0047 | 22140 | TSS | 1993 | 66.37 | 35,602 | 2,362,875 | 0.103 | 35.602 | 106.72 | 93.9  | 30.0 |
| EC0047 | 22140 | TSS | 1994 | 37.11 | 36,195 | 1,343,043 | 0.103 | 36.195 | 60.66  | 75.8  | 16.8 |
| EC0047 | 22140 | TSS | 1995 | 43.34 | 36,175 | 1,567,906 | 0.103 | 36.175 | 70.82  | 83.2  | 19.6 |
| EC0047 | 22140 | TSS | 1996 | 37.02 | 35,874 | 1,328,127 | 0.103 | 35.874 | 59.99  | 75.7  | 16.7 |
| EC0047 | 22140 | TSS | 1997 | 33.49 | 26,921 | 901,480   | 0.078 | 26.921 | 40.72  | 87.5  | 15.1 |
| EC0047 | 22140 | TSS | 1998 | 21.58 | 28,265 | 609,970   | 0.078 | 28.265 | 27.55  | 80.4  | 9.7  |
| EC0047 | 22140 | TSS | 1999 | 36.85 | 26,038 | 959,380   | 0.078 | 26.038 | 43.33  | 78.2  | 16.6 |
| EC0047 | 22140 | TSS | 2000 | 10.12 | 10,908 | 110,343   | 0.085 | 10.908 | 4.98   | 90.4  | 4.6  |
| EC0047 | 22140 | TSS | 2000 | 10.10 | 30,618 | 309,381   | 0.078 | 30.618 | 13.97  | 90.4  | 4.6  |
| EC0047 | 22140 | TSS | 2001 | 53.16 | 18,330 | 974,356   | 0.085 | 18.330 | 44.01  | 94.1  | 24.0 |
| EC0047 | 22140 | TSS | 2001 | 51.36 | 33,747 | 1,733,323 | 0.039 | 33.747 | 78.29  | 94.1  | 23.2 |
| EC0047 | 22140 | TSS | 2002 | 86.19 | 18,670 | 1,609,167 | 0.085 | 18.670 | 72.68  | 106.1 | 38.9 |
| EC0047 | 22140 | TSS | 2002 | 86.19 | 39,534 | 3,407,376 | 0.345 | 39.534 | 153.90 | 106.1 | 38.9 |
| EC0047 | 22140 | TSS | 2003 | 40.30 | 18,060 | 727,716   | 0.085 | 18.060 | 32.87  | 61.8  | 18.2 |
| EC0047 | 22140 | TSS | 2003 | 40.28 | 39,536 | 1,592,698 | 0.345 | 39.536 | 71.94  | 61.8  | 18.2 |
| EC0047 | 22140 | TSS | 2004 | 33.82 | 16,554 | 559,854   | 0.085 | 16.554 | 25.29  | 83.2  | 15.3 |

| Fish Cre | eek          |           |      |               |                          |                 |       |                          |                            |                |                |      |
|----------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site     | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| FC0002   | 1320         | NO3       | 2001 | 3.39          | 826                      | 2,799           | 0.284 | 0.826                    | 2.12                       | 83.9           | 25.7           | 0.31 |
| FC0002   | 1320         | NO3       | 2002 | 4.88          | 960                      | 4,687           | 0.166 | 0.960                    | 3.55                       | 112.1          | 37.0           | 0.33 |
| FC0002   | 1320         | NO3       | 2003 | 3.39          | 891                      | 3,016           | 0.093 | 0.891                    | 2.28                       | 60.2           | 25.7           | 0.43 |
| FC0002   | 1320         | NO3       | 2004 | 2.63          | 954                      | 2,509           | 0.093 | 0.954                    | 1.90                       | 77.1           | 19.9           | 0.26 |
| FC0002   | 1320         | TDP       | 1996 | 2.22          | 61                       | 136             | 0.279 | 0.061                    | 0.10                       | 77.5           | 16.8           | 0.22 |
| FC0002   | 1320         | TDP       | 1997 | 2.93          | 117                      | 342             | 0.231 | 0.117                    | 0.26                       | 80.7           | 22.2           | 0.28 |
| FC0002   | 1320         | TDP       | 1999 | 3.92          | 98                       | 383             | 0.312 | 0.098                    | 0.29                       | 82.3           | 29.7           | 0.36 |
| FC0002   | 1320         | TDP       | 2001 | 3.39          | 81                       | 275             | 0.180 | 0.081                    | 0.21                       | 83.9           | 25.7           | 0.31 |
| FC0002   | 1320         | TDP       | 2002 | 4.88          | 96                       | 469             | 0.147 | 0.096                    | 0.36                       | 112.1          | 37.0           | 0.33 |
| FC0002   | 1320         | TDP       | 2003 | 3.39          | 89                       | 301             | 0.263 | 0.089                    | 0.23                       | 60.2           | 25.7           | 0.43 |
| FC0002   | 1320         | TDP       | 2004 | 2.63          | 107                      | 283             | 0.116 | 0.107                    | 0.21                       | 77.1           | 19.9           | 0.26 |
| FC0002   | 1320         | TKN       | 2003 | 3.39          | 970                      | 3,284           | 0.076 | 0.970                    | 2.49                       | 60.2           | 25.7           | 0.43 |
| FC0002   | 1320         | TKN       | 2004 | 2.63          | 966                      | 2,542           | 0.076 | 0.966                    | 1.93                       | 77.1           | 19.9           | 0.26 |
| FC0002   | 1320         | TP        | 1996 | 2.22          | 148                      | 328             | 0.172 | 0.148                    | 0.25                       | 77.5           | 16.8           | 0.22 |
| FC0002   | 1320         | TP        | 1997 | 2.93          | 277                      | 811             | 0.237 | 0.277                    | 0.61                       | 80.7           | 22.2           | 0.28 |
| FC0002   | 1320         | TP        | 1999 | 3.92          | 231                      | 907             | 0.335 | 0.231                    | 0.69                       | 82.3           | 29.7           | 0.36 |
| FC0002   | 1320         | TP        | 2001 | 3.39          | 141                      | 480             | 0.193 | 0.141                    | 0.36                       | 83.9           | 25.7           | 0.31 |
| FC0002   | 1320         | TP        | 2002 | 4.88          | 175                      | 854             | 0.113 | 0.175                    | 0.65                       | 112.1          | 37.0           | 0.33 |
| FC0002   | 1320         | TP        | 2003 | 3.39          | 212                      | 719             | 0.111 | 0.212                    | 0.54                       | 60.2           | 25.7           | 0.43 |
| FC0002   | 1320         | TP        | 2004 | 2.63          | 211                      | 555             | 0.111 | 0.211                    | 0.42                       | 77.1           | 19.9           | 0.26 |
| FC0002   | 1320         | TSS       | 1996 | 2.22          | 37,764                   | 83,780          | 0.302 | 37.764                   | 63.47                      | 77.5           | 16.8           | 0.22 |
| FC0002   | 1320         | TSS       | 1997 | 2.93          | 125,240                  | 366,452         | 0.194 | 125.240                  | 277.61                     | 80.7           | 22.2           | 0.28 |
| FC0002   | 1320         | TSS       | 1999 | 3.92          | 213,256                  | 836,284         | 0.355 | 213.256                  | 633.55                     | 82.3           | 29.7           | 0.36 |
| FC0002   | 1320         | TSS       | 2001 | 3.39          | 17,317                   | 58,707          | 0.355 | 17.317                   | 44.47                      | 83.9           | 25.7           | 0.31 |
| FC0002   | 1320         | TSS       | 2002 | 4.88          | 20,153                   | 98,438          | 0.285 | 20.153                   | 74.57                      | 112.1          | 37.0           | 0.33 |
| FC0002   | 1320         | TSS       | 2003 | 3.39          | 46,566                   | 157,672         | 0.195 | 46.566                   | 119.45                     | 60.2           | 25.7           | 0.43 |
| FC0002   | 1320         | TSS       | 2004 | 2.63          | 47,274                   | 124,378         | 0.195 | 47.274                   | 94.23                      | 77.1           | 19.9           | 0.26 |

| Minneha | ha Cre       | ek        |      |               |                          |                 |       |                          |                            |                |                |      |
|---------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site    | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | CV    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| MH0017  | 45730        | NO3       | 2001 | 69.15         | 252                      | 17,428          | 0.087 | 0.252                    | 0.38                       | 86.9           | 15.1           | 0.17 |
| MH0017  | 45730        | NO3       | 2002 | 111.76        | 245                      | 27,414          | 0.087 | 0.245                    | 0.60                       | 97.2           | 24.4           | 0.25 |
| MH0017  | 45730        | NO3       | 2003 | 37.27         | 269                      | 10,029          | 0.087 | 0.269                    | 0.22                       | 57.7           | 8.1            | 0.14 |
| MH0017  | 45730        | NO3       | 2004 | 47.82         | 294                      | 14,074          | 0.110 | 0.294                    | 0.31                       | 69.6           | 10.5           | 0.15 |
| MH0017  | 45730        | TDP       | 2001 | 69.15         | 36                       | 2,460           | 0.073 | 0.036                    | 0.05                       | 86.9           | 15.1           | 0.17 |
| MH0017  | 45730        | TDP       | 2002 | 111.76        | 36                       | 4,059           | 0.073 | 0.036                    | 0.09                       | 97.2           | 24.4           | 0.25 |
| MH0017  | 45730        | TDP       | 2003 | 37.27         | 33                       | 1,236           | 0.073 | 0.033                    | 0.03                       | 57.7           | 8.1            | 0.14 |
| MH0017  | 45730        | TDP       | 2004 | 47.82         | 39                       | 1,878           | 0.113 | 0.039                    | 0.04                       | 69.6           | 10.5           | 0.15 |
| MH0017  | 45730        | TKN       | 2002 | 120.27        | 869                      | 104,483         | 0.045 | 0.869                    | 2.28                       | 97.2           | 26.3           | 0.27 |
| MH0017  | 45730        | TKN       | 2003 | 37.27         | 1,167                    | 43,482          | 0.045 | 1.167                    | 0.95                       | 57.7           | 8.1            | 0.14 |
| MH0017  | 45730        | TKN       | 2004 | 47.82         | 990                      | 47,358          | 0.045 | 0.990                    | 1.04                       | 69.6           | 10.5           | 0.15 |
| MH0017  | 45730        | TP        | 2001 | 69.15         | 90                       | 6,223           | 0.060 | 0.090                    | 0.14                       | 86.9           | 15.1           | 0.17 |
| MH0017  | 45730        | TP        | 2002 | 111.76        | 89                       | 9,925           | 0.060 | 0.089                    | 0.22                       | 97.2           | 24.4           | 0.25 |
| MH0017  | 45730        | TP        | 2003 | 37.27         | 91                       | 3,375           | 0.060 | 0.091                    | 0.07                       | 57.7           | 8.1            | 0.14 |
| MH0017  | 45730        | TP        | 2004 | 47.82         | 94                       | 4,488           | 0.076 | 0.094                    | 0.10                       | 69.6           | 10.5           | 0.15 |
| MH0017  | 45730        | TSS       | 2001 | 69.15         | 13,902                   | 961,271         | 0.093 | 13.902                   | 21.02                      | 86.9           | 15.1           | 0.17 |
| MH0017  | 45730        | TSS       | 2002 | 111.76        | 13,845                   | 1,547,320       | 0.093 | 13.845                   | 33.84                      | 97.2           | 24.4           | 0.25 |
| MH0017  | 45730        | TSS       | 2003 | 37.27         | 14,103                   | 525,554         | 0.093 | 14.103                   | 11.49                      | 57.7           | 8.1            | 0.14 |
| MH0017  | 45730        | TSS       | 2004 | 47.82         | 14,757                   | 705,628         | 0.102 | 14.757                   | 15.43                      | 69.6           | 10.5           | 0.15 |

| Nine Mile ( | Creek |           |      |               |                          |                 |       |                          |                            |                |                |      |
|-------------|-------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site        |       | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| NM0018      | 9730  | NO3       | 1990 | 15.81         | 415                      | 6,567           | 0.123 | 0.415                    | 0.67                       | 83.9           | 16.2           | 0.19 |
| NM0018      | 9730  | NO3       | 1991 | 19.95         | 383                      | 7,634           | 0.123 | 0.383                    | 0.78                       | 93.2           | 20.5           | 0.22 |
| NM0018      | 9730  | NO3       | 1992 | 18.44         | 383                      | 7,062           | 0.123 | 0.383                    | 0.73                       | 75.4           | 18.9           | 0.25 |
| NM0018      | 9730  | NO3       | 1993 | 22.79         | 364                      | 8,299           | 0.123 | 0.364                    | 0.85                       | 81.8           | 23.4           | 0.29 |
| NM0018      | 9730  | NO3       | 1994 | 19.44         | 396                      | 7,698           | 0.123 | 0.396                    | 0.79                       | 75.4           | 20.0           | 0.27 |
| NM0018      | 9730  | NO3       | 1995 | 17.86         | 414                      | 7,396           | 0.123 | 0.414                    | 0.76                       | 65.2           | 18.4           | 0.28 |
| NM0018      | 9730  | NO3       | 1996 | 16.79         | 436                      | 7,319           | 0.123 | 0.436                    | 0.75                       | 66.2           | 17.3           | 0.26 |
| NM0018      | 9730  | NO3       | 1997 | 45.90         | 338                      | 15,514          | 0.082 | 0.338                    | 1.59                       | 87.4           | 47.2           | 0.54 |
| NM0018      | 9730  | NO3       | 1998 | 42.35         | 366                      | 15,492          | 0.082 | 0.366                    | 1.59                       | 84.8           | 43.5           | 0.51 |
| NM0018      | 9730  | NO3       | 2000 | 25.60         | 397                      | 10,151          | 0.082 | 0.397                    | 1.04                       | 77.4           | 26.3           | 0.34 |
| NM0018      | 9730  | NO3       | 2001 | 26.92         | 513                      | 13,811          | 0.063 | 0.513                    | 1.42                       | 86.9           | 27.7           | 0.32 |
| NM0018      | 9730  | NO3       | 2002 | 38.20         | 491                      | 18,762          | 0.063 | 0.491                    | 1.93                       | 97.2           | 39.3           | 0.40 |
| NM0018      | 9730  | NO3       | 2003 | 16.30         | 499                      | 8,141           | 0.063 | 0.499                    | 0.84                       | 57.7           | 16.8           | 0.29 |
| NM0018      | 9730  | NO3       | 2004 | 16.54         | 563                      | 9,310           | 0.097 | 0.563                    | 0.96                       | 69.6           | 17.0           | 0.24 |
| NM0018      | 9730  | TDP       | 1990 | 15.81         | 71                       | 1,120           | 0.138 | 0.071                    | 0.12                       | 83.9           | 16.2           | 0.19 |
| NM0018      | 9730  | TDP       | 1991 | 19.95         | 66                       | 1,322           | 0.138 | 0.066                    | 0.14                       | 93.2           | 20.5           | 0.22 |
| NM0018      | 9730  | TDP       | 1992 | 18.44         | 70                       | 1,298           | 0.138 | 0.070                    | 0.13                       | 75.4           | 18.9           | 0.25 |
| NM0018      | 9730  | TDP       | 1993 | 22.79         | 68                       | 1,548           | 0.138 | 0.068                    | 0.16                       | 81.8           | 23.4           | 0.29 |
| NM0018      | 9730  | TDP       | 1994 | 19.44         | 66                       | 1,284           | 0.138 | 0.066                    | 0.13                       | 75.4           | 20.0           | 0.27 |
| NM0018      | 9730  | TDP       | 1995 | 17.86         | 67                       | 1,191           | 0.138 | 0.067                    | 0.12                       | 65.2           | 18.4           | 0.28 |
| NM0018      | 9730  | TDP       | 1996 | 16.79         | 68                       | 1,135           | 0.138 | 0.068                    | 0.12                       | 66.2           | 17.3           | 0.26 |
| NM0018      | 9730  | TDP       | 1997 | 45.90         | 43                       | 1,987           | 0.059 | 0.043                    | 0.20                       | 87.4           | 47.2           | 0.54 |
| NM0018      | 9730  | TDP       | 1998 | 42.35         | 43                       | 1,810           | 0.059 | 0.043                    | 0.19                       | 84.8           | 43.5           | 0.51 |
| NM0018      | 9730  | TDP       | 2000 | 25.60         | 41                       | 1,042           | 0.059 | 0.041                    | 0.11                       | 77.4           | 26.3           | 0.34 |
| NM0018      | 9730  | TDP       | 2001 | 26.92         | 52                       | 1,397           | 0.105 | 0.052                    | 0.14                       | 86.9           | 27.7           | 0.32 |
| NM0018      | 9730  | TDP       | 2002 | 38.20         | 51                       | 1,964           | 0.105 | 0.051                    | 0.20                       | 97.2           | 39.3           | 0.40 |
| NM0018      | 9730  | TDP       | 2003 | 16.31         | 49                       | 797             | 0.105 | 0.049                    | 0.08                       | 57.7           | 16.8           | 0.29 |
| NM0018      | 9730  | TDP       | 2004 | 16.54         | 49                       | 817             | 0.105 | 0.049                    | 0.08                       | 69.6           | 17.0           | 0.24 |
| NM0018      | 9730  | TKN       | 2000 | 24.30         | 1,490                    | 36,204          | 0.060 | 1.490                    | 3.72                       | 77.4           | 25.0           | 0.32 |
| NM0018      | 9730  | TKN       | 2001 | 26.92         | 1,574                    | 42,388          | 0.060 | 1.574                    | 4.36                       | 86.9           | 27.7           | 0.32 |
| NM0018      | 9730  | TKN       | 2002 | 38.20         | 1,667                    | 63,694          | 0.060 | 1.667                    | 6.55                       | 97.2           | 39.3           | 0.40 |
| NM0018      | 9730  | TKN       | 2003 | 16.31         | 1,552                    | 25,302          | 0.060 | 1.552                    | 2.60                       | 57.7           | 16.8           | 0.29 |
| NM0018      | 9730  | TKN       | 2004 | 16.54         | 1,479                    | 24,460          | 0.060 | 1.479                    | 2.51                       | 69.6           | 17.0           | 0.24 |
| NM0018      | 9730  | TP        | 1990 | 15.81         | 301                      | 4,760           | 0.088 | 0.301                    | 0.49                       | 83.9           | 16.2           | 0.19 |
| NM0018      | 9730  | TP        | 1991 | 19.95         | 292                      | 5,819           | 0.088 | 0.292                    | 0.60                       | 93.2           | 20.5           | 0.22 |

| NM0018 | 9730 | TP  | 1992 | 18.44 | 321     | 5,925     | 0.088 | 0.321   | 0.61   | 75.4 | 18.9 | 0.25 |
|--------|------|-----|------|-------|---------|-----------|-------|---------|--------|------|------|------|
| NM0018 | 9730 | TP  | 1993 | 22.79 | 321     | 7,317     | 0.088 | 0.321   | 0.75   | 81.8 | 23.4 | 0.29 |
| NM0018 | 9730 | TP  | 1994 | 19.44 | 273     | 5,313     | 0.088 | 0.273   | 0.55   | 75.4 | 20.0 | 0.27 |
| NM0018 | 9730 | TP  | 1995 | 17.86 | 260     | 4,651     | 0.088 | 0.260   | 0.48   | 65.2 | 18.4 | 0.28 |
| NM0018 | 9730 | TP  | 1996 | 16.79 | 252     | 4,226     | 0.088 | 0.252   | 0.43   | 66.2 | 17.3 | 0.26 |
| NM0018 | 9730 | TP  | 1997 | 45.90 | 224     | 10,287    | 0.080 | 0.224   | 1.06   | 87.4 | 47.2 | 0.54 |
| NM0018 | 9730 | TP  | 1998 | 42.35 | 208     | 8,817     | 0.080 | 0.208   | 0.91   | 84.8 | 43.5 | 0.51 |
| NM0018 | 9730 | TP  | 2000 | 24.30 | 195     | 4,734     | 0.077 | 0.195   | 0.49   | 77.4 | 25.0 | 0.32 |
| NM0018 | 9730 | TP  | 2001 | 26.92 | 216     | 5,815     | 0.077 | 0.216   | 0.60   | 86.9 | 27.7 | 0.32 |
| NM0018 | 9730 | TP  | 2002 | 38.20 | 239     | 9,137     | 0.077 | 0.239   | 0.94   | 97.2 | 39.3 | 0.40 |
| NM0018 | 9730 | TP  | 2003 | 16.31 | 220     | 3,583     | 0.077 | 0.220   | 0.37   | 57.7 | 16.8 | 0.29 |
| NM0018 | 9730 | TP  | 2004 | 16.54 | 196     | 3,236     | 0.077 | 0.196   | 0.33   | 69.6 | 17.0 | 0.24 |
| NM0018 | 9730 | TSS | 1990 | 15.81 | 207,399 | 3,278,230 | 0.186 | 207.399 | 336.92 | 83.9 | 16.2 | 0.19 |
| NM0018 | 9730 | TSS | 1991 | 19.95 | 187,742 | 3,745,458 | 0.186 | 187.742 | 384.94 | 93.2 | 20.5 | 0.22 |
| NM0018 | 9730 | TSS | 1992 | 18.44 | 230,774 | 4,254,449 | 0.186 | 230.774 | 437.25 | 75.4 | 18.9 | 0.25 |
| NM0018 | 9730 | TSS | 1993 | 22.79 | 229,726 | 5,235,853 | 0.186 | 229.726 | 538.11 | 81.8 | 23.4 | 0.29 |
| NM0018 | 9730 | TSS | 1994 | 19.44 | 156,693 | 3,045,480 | 0.186 | 156.693 | 313.00 | 75.4 | 20.0 | 0.27 |
| NM0018 | 9730 | TSS | 1995 | 17.86 | 139,619 | 2,493,280 | 0.186 | 139.619 | 256.25 | 65.2 | 18.4 | 0.28 |
| NM0018 | 9730 | TSS | 1996 | 16.79 | 128,437 | 2,155,804 | 0.186 | 128.437 | 221.56 | 66.2 | 17.3 | 0.26 |
| NM0018 | 9730 | TSS | 1997 | 45.90 | 117,557 | 5,396,042 | 0.152 | 117.557 | 554.58 | 87.4 | 47.2 | 0.54 |
| NM0018 | 9730 | TSS | 1998 | 42.35 | 101,036 | 4,278,932 | 0.152 | 101.036 | 439.77 | 84.8 | 43.5 | 0.51 |
| NM0018 | 9730 | TSS | 2000 | 24.30 | 76,138  | 1,849,994 | 0.123 | 76.138  | 190.13 | 77.4 | 25.0 | 0.32 |
| NM0018 | 9730 | TSS | 2001 | 26.92 | 94,236  | 2,537,208 | 0.123 | 94.236  | 260.76 | 86.9 | 27.7 | 0.32 |
| NM0018 | 9730 | TSS | 2002 | 38.20 | 107,475 | 4,105,775 | 0.123 | 107.475 | 421.97 | 97.2 | 39.3 | 0.40 |
| NM0018 | 9730 | TSS | 2003 | 16.31 | 93,775  | 1,529,286 | 0.123 | 93.775  | 157.17 | 57.7 | 16.8 | 0.29 |
| NM0018 | 9730 | TSS | 2004 | 16.54 | 67,114  | 1,109,858 | 0.123 | 67.114  | 114.07 | 69.6 | 17.0 | 0.24 |

| Rice Cr | eek          |           |      |               |                          |                 |       |                          |                            |                |                |      |
|---------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site    | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | CV    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| RC0037  | 47800        | DOP       | 2001 | 84.97         | 24                       | 2,046           | 0.101 | 0.024                    | 0.04                       | 88.0           | 17.8           | 0.20 |
| RC0037  | 47800        | DOP       | 2002 | 121.72        | 26                       | 3,151           | 0.101 | 0.026                    | 0.07                       | 98.3           | 25.5           | 0.26 |
| RC0037  | 47800        | DOP       | 2003 | 75.54         | 28                       | 2,088           | 0.101 | 0.028                    | 0.04                       | 53.4           | 15.8           | 0.30 |
| RC0037  | 47800        | DOP       | 2004 | 52.70         | 30                       | 1,556           | 0.101 | 0.030                    | 0.03                       | 79.0           | 11.0           | 0.14 |
| RC0037  | 47800        | TKN       | 2001 | 84.97         | 1,602                    | 136,153         | 0.054 | 1.602                    | 2.85                       | 88.0           | 17.8           | 0.20 |
| RC0037  | 47800        | TKN       | 2002 | 121.72        | 1,798                    | 218,900         | 0.054 | 1.798                    | 4.58                       | 98.3           | 25.5           | 0.26 |
| RC0037  | 47800        | TKN       | 2003 | 75.54         | 1,663                    | 125,605         | 0.054 | 1.663                    | 2.63                       | 53.4           | 15.8           | 0.30 |
| RC0037  | 47800        | TKN       | 2004 | 52.70         | 1,704                    | 89,768          | 0.054 | 1.704                    | 1.88                       | 79.0           | 11.0           | 0.14 |
| RC0037  | 47800        | TP        | 1995 | 105.36        | 254                      | 26,801          | 0.233 | 0.254                    | 0.56                       | 89.1           | 22.0           | 0.25 |
| RC0037  | 47800        | TP        | 1996 | 66.05         | 199                      | 13,167          | 0.233 | 0.199                    | 0.28                       | 70.9           | 13.8           | 0.19 |
| RC0037  | 47800        | TP        | 1997 | 76.35         | 423                      | 32,267          | 0.180 | 0.423                    | 0.68                       | 81.3           | 16.0           | 0.20 |
| RC0037  | 47800        | TP        | 1998 | 47.23         | 409                      | 19,309          | 0.180 | 0.409                    | 0.40                       | 85.1           | 9.9            | 0.12 |
| RC0037  | 47800        | TP        | 1999 | 49.97         | 105                      | 5,260           | 0.075 | 0.105                    | 0.11                       | 82.5           | 10.5           | 0.13 |
| RC0037  | 47800        | TP        | 2000 | 41.10         | 112                      | 4,615           | 0.075 | 0.112                    | 0.10                       | 79.3           | 8.6            | 0.11 |
| RC0037  | 47800        | TP        | 2001 | 88.35         | 174                      | 15,411          | 0.121 | 0.174                    | 0.32                       | 88.0           | 18.5           | 0.21 |
| RC0037  | 47800        | TP        | 2002 | 121.57        | 168                      | 20,479          | 0.121 | 0.168                    | 0.43                       | 98.3           | 25.4           | 0.26 |
| RC0037  | 47800        | TP        | 2003 | 76.17         | 183                      | 13,904          | 0.121 | 0.183                    | 0.29                       | 53.4           | 15.9           | 0.30 |
| RC0037  | 47800        | TP        | 2004 | 52.70         | 153                      | 8,040           | 0.122 | 0.153                    | 0.17                       | 79.0           | 11.0           | 0.14 |
| RC0037  | 47800        | TSS       | 1995 | 105.36        | 70,004                   | 7,375,743       | 0.124 | 70.004                   | 154.30                     | 89.1           | 22.0           | 0.25 |
| RC0037  | 47800        | TSS       | 1996 | 66.05         | 74,036                   | 4,890,383       | 0.124 | 74.036                   | 102.31                     | 70.9           | 13.8           | 0.19 |
| RC0037  | 47800        | TSS       | 1997 | 76.35         | 260,305                  | 19,873,460      | 0.280 | 260.305                  | 415.76                     | 81.3           | 16.0           | 0.20 |
| RC0037  | 47800        | TSS       | 1998 | 47.23         | 247,066                  | 11,669,190      | 0.280 | 247.066                  | 244.13                     | 85.1           | 9.9            | 0.12 |
| RC0037  | 47800        | TSS       | 1999 | 49.97         | 23,364                   | 1,167,426       | 0.106 | 23.364                   | 24.42                      | 82.5           | 10.5           | 0.13 |
| RC0037  | 47800        | TSS       | 2000 | 41.10         | 26,612                   | 1,093,737       | 0.106 | 26.612                   | 22.88                      | 79.3           | 8.6            | 0.11 |
| RC0037  | 47800        | TSS       | 2001 | 84.97         | 36,185                   | 3,074,565       | 0.181 | 36.185                   | 64.32                      | 88.0           | 17.8           | 0.20 |
| RC0037  | 47800        | TSS       | 2002 | 121.72        | 49,257                   | 5,995,616       | 0.181 | 49.257                   | 125.43                     | 98.3           | 25.5           | 0.26 |
| RC0037  | 47800        | TSS       | 2003 | 75.54         | 40,253                   | 3,040,706       | 0.181 | 40.253                   | 63.61                      | 53.4           | 15.8           | 0.30 |
| RC0037  | 47800        | TSS       | 2004 | 52.70         | 42,373                   | 2,232,855       | 0.181 | 42.373                   | 46.71                      | 79.0           | 11.0           | 0.14 |

| Riley Ci | reek         |           |      |               |                          |                 |       |                          |                            |                |                |      |
|----------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site     | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| RI0013   | 2730         | NO3       | 2001 | 4.61          | 694                      | 3,197           | 0.075 | 0.694                    | 1.17                       | 85.5           | 16.9           | 0.20 |
| RI0013   | 2730         | NO3       | 2002 | 4.72          | 652                      | 3,076           | 0.040 | 0.652                    | 1.13                       | 93.1           | 17.3           | 0.19 |
| RI0013   | 2730         | NO3       | 2003 | 2.82          | 884                      | 2,493           | 0.040 | 0.884                    | 0.91                       | 60.1           | 10.3           | 0.17 |
| RI0013   | 2730         | NO3       | 2004 | 3.54          | 752                      | 2,664           | 0.040 | 0.752                    | 0.98                       | 70.5           | 13.0           | 0.18 |
| RI0013   | 2730         | TDP       | 2001 | 4.61          | 64                       | 294             | 0.123 | 0.064                    | 0.11                       | 85.5           | 16.9           | 0.20 |
| RI0013   | 2730         | TDP       | 2002 | 5.15          | 59                       | 306             | 0.123 | 0.059                    | 0.11                       | 93.1           | 18.9           | 0.20 |
| RI0013   | 2730         | TDP       | 2003 | 2.82          | 37                       | 106             | 0.123 | 0.037                    | 0.04                       | 60.1           | 10.3           | 0.17 |
| RI0013   | 2730         | TDP       | 2004 | 3.54          | 115                      | 408             | 0.395 | 0.115                    | 0.15                       | 70.5           | 13.0           | 0.18 |
| RI0013   | 2730         | TKN       | 2000 | 1.37          | 842                      | 1,157           | 0.125 | 0.842                    | 0.42                       | 59.5           | 5.0            | 0.08 |
| RI0013   | 2730         | TKN       | 2001 | 5.46          | 2,513                    | 13,714          | 0.125 | 2.513                    | 5.02                       | 85.5           | 20.0           | 0.23 |
| RI0013   | 2730         | TKN       | 2002 | 4.72          | 2,194                    | 10,347          | 0.125 | 2.194                    | 3.79                       | 93.1           | 17.3           | 0.19 |
| RI0013   | 2730         | TKN       | 2003 | 2.82          | 1,683                    | 4,744           | 0.125 | 1.683                    | 1.74                       | 60.1           | 10.3           | 0.17 |
| RI0013   | 2730         | TKN       | 2004 | 3.55          | 2,229                    | 7,902           | 0.125 | 2.229                    | 2.89                       | 70.5           | 13.0           | 0.18 |
| RI0013   | 2730         | TP        | 2000 | 1.37          | 219                      | 301             | 0.173 | 0.219                    | 0.11                       | 59.5           | 5.0            | 0.08 |
| RI0013   | 2730         | TP        | 2001 | 5.46          | 718                      | 3,920           | 0.173 | 0.718                    | 1.44                       | 85.5           | 20.0           | 0.23 |
| RI0013   | 2730         | TP        | 2002 | 4.72          | 621                      | 2,928           | 0.173 | 0.621                    | 1.07                       | 93.1           | 17.3           | 0.19 |
| RI0013   | 2730         | TP        | 2003 | 2.82          | 468                      | 1,320           | 0.173 | 0.468                    | 0.48                       | 60.1           | 10.3           | 0.17 |
| RI0013   | 2730         | TP        | 2004 | 3.55          | 634                      | 2,249           | 0.173 | 0.634                    | 0.82                       | 70.5           | 13.0           | 0.18 |
| RI0013   | 2730         | TSS       | 2000 | 1.37          | 145,466                  | 199,871         | 0.186 | 145.466                  | 73.21                      | 59.5           | 5.0            | 0.08 |
| RI0013   | 2730         | TSS       | 2001 | 5.46          | 652,790                  | 3,562,276       | 0.186 | 652.790                  | 1,304.86                   | 85.5           | 20.0           | 0.23 |
| RI0013   | 2730         | TSS       | 2002 | 4.72          | 546,371                  | 2,576,686       | 0.186 | 546.371                  | 943.84                     | 93.1           | 17.3           | 0.19 |
| RI0013   | 2730         | TSS       | 2003 | 2.82          | 391,902                  | 1,104,771       | 0.186 | 391.902                  | 404.68                     | 60.1           | 10.3           | 0.17 |
| RI0013   | 2730         | TSS       | 2004 | 3.55          | 570,245                  | 2,021,517       | 0.186 | 570.245                  | 740.48                     | 70.5           | 13.0           | 0.18 |

12.11

**A** 1

| Rum River |              |           |      |               |                          |                    |       |                          |                            |                |                |      |
|-----------|--------------|-----------|------|---------------|--------------------------|--------------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site      | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass<br>(kg) | CV    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| RUM0007   | 402000       | NO3       | 2001 | 983.29        | 525                      | 516,068            | 0.197 | 0.525                    | 1.28                       | 93.1           | 24.5           | 0.26 |
| RUM0007   | 402000       | NO3       | 2001 | 983.29        | 567                      | 557,507            | 0.123 | 0.567                    | 1.39                       | 93.1           | 24.5           | 0.26 |
| RUM0007   | 402000       | NO3       | 2002 | 1260.11       | 515                      | 648,570            | 0.066 | 0.515                    | 1.61                       | 112.3          | 31.3           | 0.28 |
| RUM0007   | 402000       | NO3       | 2002 | 1260.11       | 538                      | 678,013            | 0.123 | 0.538                    | 1.69                       | 112.3          | 31.3           | 0.28 |
| RUM0007   | 402000       | NO3       | 2003 | 968.55        | 404                      | 391,363            | 0.183 | 0.404                    | 0.97                       | 73.1           | 24.1           | 0.33 |
| RUM0007   | 402000       | NO3       | 2003 | 969.10        | 540                      | 523,383            | 0.123 | 0.540                    | 1.30                       | 73.1           | 24.1           | 0.33 |
| RUM0007   | 402000       | NO3       | 2004 | 703.77        | 501                      | 352,470            | 0.123 | 0.501                    | 0.88                       | 89.7           | 17.5           | 0.20 |
| RUM0007   | 402000       | TDP       | 1997 | 796.71        | 59                       | 46,973             | 0.071 | 0.059                    | 0.12                       | 71.3           | 19.8           | 0.28 |
| RUM0007   | 402000       | TDP       | 1999 | 639.66        | 62                       | 39,379             | 0.140 | 0.062                    | 0.10                       | 86.2           | 15.9           | 0.18 |
| RUM0007   | 402000       | TDP       | 2000 | 428.41        | 93                       | 39,999             | 0.184 | 0.093                    | 0.10                       | 68.4           | 10.7           | 0.16 |
| RUM0007   | 402000       | TDP       | 2001 | 983.29        | 66                       | 64,796             | 0.162 | 0.066                    | 0.16                       | 93.1           | 24.5           | 0.26 |
| RUM0007   | 402000       | TDP       | 2001 | 983.29        | 63                       | 61,466             | 0.064 | 0.063                    | 0.15                       | 93.1           | 24.5           | 0.26 |
| RUM0007   | 402000       | TDP       | 2002 | 1260.11       | 55                       | 69,601             | 0.112 | 0.055                    | 0.17                       | 112.3          | 31.3           | 0.28 |
| RUM0007   | 402000       | TDP       | 2002 | 1260.11       | 64                       | 80,848             | 0.064 | 0.064                    | 0.20                       | 112.3          | 31.3           | 0.28 |
| RUM0007   | 402000       | TDP       | 2003 | 968.55        | 48                       | 46,728             | 0.227 | 0.048                    | 0.12                       | 73.1           | 24.1           | 0.33 |
| RUM0007   | 402000       | TDP       | 2003 | 969.10        | 60                       | 57,943             | 0.064 | 0.060                    | 0.14                       | 73.1           | 24.1           | 0.33 |
| RUM0007   | 402000       | TDP       | 2004 | 703.77        | 53                       | 37,011             | 0.064 | 0.053                    | 0.09                       | 89.7           | 17.5           | 0.20 |
| RUM0007   | 402000       | TKN       | 2001 | 983.29        | 988                      | 971,700            | 0.044 | 0.988                    | 2.42                       | 93.1           | 24.5           | 0.26 |
| RUM0007   | 402000       | TKN       | 2002 | 1260.11       | 1,092                    | 1,376,074          | 0.044 | 1.092                    | 3.42                       | 112.3          | 31.3           | 0.28 |
| RUM0007   | 402000       | TKN       | 2003 | 969.10        | 1,031                    | 999,378            | 0.044 | 1.031                    | 2.49                       | 73.1           | 24.1           | 0.33 |
| RUM0007   | 402000       | TKN       | 2004 | 703.77        | 939                      | 660,490            | 0.044 | 0.939                    | 1.64                       | 89.7           | 17.5           | 0.20 |
| RUM0007   | 402000       | TP        | 1997 | 796.71        | 115                      | 91,994             | 0.105 | 0.115                    | 0.23                       | 71.3           | 19.8           | 0.28 |
| RUM0007   | 402000       | TP        | 1999 | 639.66        | 158                      | 101,351            | 0.281 | 0.158                    | 0.25                       | 86.2           | 15.9           | 0.18 |
| RUM0007   | 402000       | TP        | 2000 | 428.41        | 150                      | 64,062             | 0.339 | 0.150                    | 0.16                       | 68.4           | 10.7           | 0.16 |
| RUM0007   | 402000       | TP        | 2001 | 983.29        | 154                      | 151,648            | 0.131 | 0.154                    | 0.38                       | 93.1           | 24.5           | 0.26 |
| RUM0007   | 402000       | TP        | 2001 | 983.29        | 141                      | 138,802            | 0.057 | 0.141                    | 0.35                       | 93.1           | 24.5           | 0.26 |
| RUM0007   | 402000       | TP        | 2002 | 1260.11       | 136                      | 171,202            | 0.068 | 0.136                    | 0.43                       | 112.3          | 31.3           | 0.28 |
| RUM0007   | 402000       | TP        | 2002 | 1260.11       | 153                      | 193,363            | 0.057 | 0.153                    | 0.48                       | 112.3          | 31.3           | 0.28 |
| RUM0007   | 402000       | TP        | 2003 | 967.47        | 207                      | 200,130            | 0.178 | 0.207                    | 0.50                       | 73.1           | 24.1           | 0.33 |
| RUM0007   | 402000       | TP        | 2003 | 969.10        | 142                      | 137,748            | 0.057 | 0.142                    | 0.34                       | 73.1           | 24.1           | 0.33 |
| RUM0007   | 402000       | TP        | 2004 | 703.77        | 124                      | 87,000             | 0.057 | 0.124                    | 0.22                       | 89.7           | 17.5           | 0.20 |
| RUM0007   | 402000       | TSS       | 1997 | 796.71        | 19,125                   | 15,237,080         | 0.288 | 19.125                   | 37.90                      | 71.3           | 19.8           | 0.28 |
| RUM0007   | 402000       | TSS       | 1999 | 639.66        | 39,751                   | 25,426,710         | 0.097 | 39.751                   | 63.25                      | 86.2           | 15.9           | 0.18 |
| RUM0007   | 402000       | TSS       | 2000 | 428.41        | 8,483                    | 3,634,275          | 0.182 | 8.483                    | 9.04                       | 68.4           | 10.7           | 0.16 |
| RUM0007   | 402000       | TSS       | 2001 | 983.29        | 27,598                   | 27,137,230         | 0.221 | 27.598                   | 67.51                      | 93.1           | 24.5           | 0.26 |
| RUM0007   | 402000       | TSS       | 2001 | 983.29        | 24,754                   | 24,339,992         | 0.104 | 24.754                   | 60.55                      | 93.1           | 24.5           | 0.26 |

| RUM0007 | 402000 | TSS | 2002 | 1260.11 | 25,740 | 32,435,410 | 0.106 | 25.740 | 80.69 | 112.3 | 31.3 | 0.28 |
|---------|--------|-----|------|---------|--------|------------|-------|--------|-------|-------|------|------|
| RUM0007 | 402000 | TSS | 2002 | 1260.11 | 26,900 | 33,896,625 | 0.104 | 26.900 | 84.32 | 112.3 | 31.3 | 0.28 |
| RUM0007 | 402000 | TSS | 2003 | 968.55  | 23,059 | 22,334,160 | 0.152 | 23.059 | 55.56 | 73.1  | 24.1 | 0.33 |
| RUM0007 | 402000 | TSS | 2003 | 969.10  | 24,514 | 23,756,358 | 0.104 | 24.514 | 59.10 | 73.1  | 24.1 | 0.33 |
| RUM0007 | 402000 | TSS | 2004 | 703.77  | 20,680 | 14,554,096 | 0.104 | 20.680 | 36.20 | 89.7  | 17.5 | 0.20 |

| Sand Ci | reek         |           |      |               |                          |                 |       |                          |                            |                |                |      |
|---------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site    | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| SA0082  | 60390        | NO3       | 1990 | 134.93        | 6,597                    | 890,100         | 0.080 | 6.597                    | 14.74                      | 86.7           | 22.3           | 0.26 |
| SA0082  | 60390        | NO3       | 1991 | 83.49         | 6,188                    | 516,626         | 0.080 | 6.188                    | 8.55                       | 90.2           | 13.8           | 0.15 |
| SA0082  | 60390        | NO3       | 1992 | 216.13        | 5,596                    | 1,209,390       | 0.080 | 5.596                    | 20.03                      | 93.9           | 35.8           | 0.38 |
| SA0082  | 60390        | NO3       | 1993 | 261.13        | 2,907                    | 759,005         | 0.046 | 2.907                    | 12.57                      | 88.7           | 43.2           | 0.49 |
| SA0082  | 60390        | NO3       | 1994 | 122.82        | 2,723                    | 334,426         | 0.046 | 2.723                    | 5.54                       | 89.5           | 20.3           | 0.23 |
| SA0082  | 60390        | NO3       | 1995 | 119.09        | 2,745                    | 326,907         | 0.046 | 2.745                    | 5.41                       | 79.6           | 19.7           | 0.25 |
| SA0082  | 60390        | NO3       | 1996 | 102.30        | 2,738                    | 280,108         | 0.046 | 2.738                    | 4.64                       | 82.5           | 16.9           | 0.21 |
| SA0082  | 60390        | NO3       | 1997 | 177.33        | 3,070                    | 544,392         | 0.055 | 3.070                    | 9.01                       | 70.5           | 29.4           | 0.42 |
| SA0082  | 60390        | NO3       | 1998 | 184.25        | 3,945                    | 726,861         | 0.055 | 3.945                    | 12.04                      | 99.8           | 30.5           | 0.31 |
| SA0082  | 60390        | NO3       | 1999 | 107.76        | 3,837                    | 413,495         | 0.055 | 3.837                    | 6.85                       | 88.0           | 17.8           | 0.20 |
| SA0082  | 60390        | NO3       | 2000 | 57.62         | 3,985                    | 229,572         | 0.055 | 3.985                    | 3.80                       | 59.6           | 9.5            | 0.16 |
| SA0082  | 60390        | NO3       | 2001 | 130.96        | 6,023                    | 788,841         | 0.070 | 6.023                    | 13.06                      | 70.0           | 21.7           | 0.31 |
| SA0082  | 60390        | NO3       | 2002 | 140.92        | 5,251                    | 740,021         | 0.070 | 5.251                    | 12.25                      | 105.6          | 23.3           | 0.22 |
| SA0082  | 60390        | NO3       | 2003 | 69.39         | 4,874                    | 338,237         | 0.070 | 4.874                    | 5.60                       | 49.0           | 11.5           | 0.23 |
| SA0082  | 60390        | NO3       | 2004 | 80.01         | 4,474                    | 357,989         | 0.074 | 4.474                    | 5.93                       | 88.4           | 13.2           | 0.15 |
| SA0082  | 60390        | TDP       | 1990 | 134.93        | 326                      | 44,024          | 0.088 | 0.326                    | 0.73                       | 86.7           | 22.3           | 0.26 |
| SA0082  | 60390        | TDP       | 1991 | 83.49         | 334                      | 27,885          | 0.088 | 0.334                    | 0.46                       | 90.2           | 13.8           | 0.15 |
| SA0082  | 60390        | TDP       | 1992 | 216.13        | 341                      | 73,625          | 0.088 | 0.341                    | 1.22                       | 93.9           | 35.8           | 0.38 |
| SA0082  | 60390        | TDP       | 1993 | 261.13        | 212                      | 55,474          | 0.044 | 0.212                    | 0.92                       | 88.7           | 43.2           | 0.49 |
| SA0082  | 60390        | TDP       | 1994 | 122.82        | 191                      | 23,493          | 0.044 | 0.191                    | 0.39                       | 89.5           | 20.3           | 0.23 |
| SA0082  | 60390        | TDP       | 1995 | 119.09        | 191                      | 22,711          | 0.044 | 0.191                    | 0.38                       | 79.6           | 19.7           | 0.25 |
| SA0082  | 60390        | TDP       | 1996 | 102.30        | 191                      | 19,565          | 0.044 | 0.191                    | 0.32                       | 82.5           | 16.9           | 0.21 |
| SA0082  | 60390        | TDP       | 1997 | 177.45        | 214                      | 38,043          | 0.049 | 0.214                    | 0.63                       | 70.5           | 29.4           | 0.42 |
| SA0082  | 60390        | TDP       | 1998 | 184.28        | 223                      | 41,064          | 0.049 | 0.223                    | 0.68                       | 99.8           | 30.5           | 0.31 |
| SA0082  | 60390        | TDP       | 1999 | 107.76        | 203                      | 21,837          | 0.049 | 0.203                    | 0.36                       | 88.0           | 17.8           | 0.20 |
| SA0082  | 60390        | TDP       | 2000 | 57.62         | 197                      | 11,326          | 0.049 | 0.197                    | 0.19                       | 59.6           | 9.5            | 0.16 |
| SA0082  | 60390        | TDP       | 2001 | 130.96        | 230                      | 30,166          | 0.051 | 0.230                    | 0.50                       | 70.0           | 21.7           | 0.31 |
| SA0082  | 60390        | TDP       | 2002 | 140.92        | 211                      | 29,690          | 0.051 | 0.211                    | 0.49                       | 105.6          | 23.3           | 0.22 |
| SA0082  | 60390        | TDP       | 2003 | 69.39         | 202                      | 14,037          | 0.051 | 0.202                    | 0.23                       | 49.0           | 11.5           | 0.23 |
| SA0082  | 60390        | TDP       | 2004 | 80.01         | 186                      | 14,843          | 0.076 | 0.186                    | 0.25                       | 88.4           | 13.2           | 0.15 |
| SA0082  | 60390        | TKN       | 2003 | 69.40         | 3,056                    | 212,068         | 0.078 | 3.056                    | 3.51                       | 49.0           | 11.5           | 0.23 |
| SA0082  | 60390        | TKN       | 2004 | 80.01         | 3,005                    | 240,464         | 0.078 | 3.005                    | 3.98                       | 88.4           | 13.2           | 0.15 |
| SA0082  | 60390        | TP        | 1990 | 134.93        | 781                      | 105,336         | 0.168 | 0.781                    | 1.74                       | 86.7           | 22.3           | 0.26 |
| SA0082  | 60390        | TP        | 1991 | 83.49         | 751                      | 62,667          | 0.168 | 0.751                    | 1.04                       | 90.2           | 13.8           | 0.15 |
| SA0082  | 60390        | TP        | 1992 | 216.40        | 781                      | 169,062         | 0.168 | 0.781                    | 2.80                       | 93.9           | 35.8           | 0.38 |
| SA0082  | 60390        | TP        | 1993 | 261.13        | 652                      | 170,369         | 0.090 | 0.652                    | 2.82                       | 88.7           | 43.2           | 0.49 |

| SA0082 | 60390 | TP  | 1994 | 122.82 | 574     | 70,560      | 0.090 | 0.574   | 1.17     | 89.5  | 20.3 | 0.23 |
|--------|-------|-----|------|--------|---------|-------------|-------|---------|----------|-------|------|------|
| SA0082 | 60390 | TP  | 1995 | 119.09 | 576     | 68,649      | 0.090 | 0.576   | 1.14     | 79.6  | 19.7 | 0.25 |
| SA0082 | 60390 | TP  | 1996 | 102.30 | 577     | 58,993      | 0.090 | 0.577   | 0.98     | 82.5  | 16.9 | 0.21 |
| SA0082 | 60390 | TP  | 1997 | 177.45 | 641     | 113,689     | 0.059 | 0.641   | 1.88     | 70.5  | 29.4 | 0.42 |
| SA0082 | 60390 | TP  | 1998 | 184.28 | 720     | 132,751     | 0.059 | 0.720   | 2.20     | 99.8  | 30.5 | 0.31 |
| SA0082 | 60390 | TP  | 1999 | 107.76 | 561     | 60,466      | 0.059 | 0.561   | 1.00     | 88.0  | 17.8 | 0.20 |
| SA0082 | 60390 | TP  | 2000 | 57.62  | 531     | 30,598      | 0.059 | 0.531   | 0.51     | 59.6  | 9.5  | 0.16 |
| SA0082 | 60390 | TP  | 2001 | 130.96 | 581     | 76,077      | 0.074 | 0.581   | 1.26     | 70.0  | 21.7 | 0.31 |
| SA0082 | 60390 | TP  | 2002 | 140.92 | 522     | 73,500      | 0.074 | 0.522   | 1.22     | 105.6 | 23.3 | 0.22 |
| SA0082 | 60390 | TP  | 2003 | 69.39  | 487     | 33,760      | 0.074 | 0.487   | 0.56     | 49.0  | 11.5 | 0.23 |
| SA0082 | 60390 | TP  | 2004 | 80.01  | 610     | 48,779      | 0.092 | 0.610   | 0.81     | 88.4  | 13.2 | 0.15 |
| SA0082 | 60390 | TSS | 1990 | 134.93 | 227,173 | 30,651,740  | 0.146 | 227.173 | 507.56   | 86.7  | 22.3 | 0.26 |
| SA0082 | 60390 | TSS | 1991 | 83.49  | 227,384 | 18,983,820  | 0.146 | 227.384 | 314.35   | 90.2  | 13.8 | 0.15 |
| SA0082 | 60390 | TSS | 1992 | 216.13 | 309,912 | 66,979,840  | 0.146 | 309.912 | 1,109.12 | 93.9  | 35.8 | 0.38 |
| SA0082 | 60390 | TSS | 1993 | 261.13 | 388,123 | 101,350,200 | 0.107 | 388.123 | 1,678.26 | 88.7  | 43.2 | 0.49 |
| SA0082 | 60390 | TSS | 1994 | 122.82 | 282,334 | 34,677,290  | 0.107 | 282.334 | 574.22   | 89.5  | 20.3 | 0.23 |
| SA0082 | 60390 | TSS | 1995 | 119.09 | 289,202 | 34,442,180  | 0.107 | 289.202 | 570.33   | 79.6  | 19.7 | 0.25 |
| SA0082 | 60390 | TSS | 1996 | 102.30 | 289,157 | 29,581,740  | 0.107 | 289.157 | 489.85   | 82.5  | 16.9 | 0.21 |
| SA0082 | 60390 | TSS | 1997 | 177.45 | 325,468 | 57,752,780  | 0.109 | 325.468 | 956.33   | 70.5  | 29.4 | 0.42 |
| SA0082 | 60390 | TSS | 1998 | 184.28 | 406,818 | 74,968,930  | 0.109 | 406.818 | 1,241.41 | 99.8  | 30.5 | 0.31 |
| SA0082 | 60390 | TSS | 1999 | 107.76 | 238,898 | 25,744,070  | 0.109 | 238.898 | 426.30   | 88.0  | 17.8 | 0.20 |
| SA0082 | 60390 | TSS | 2000 | 57.62  | 193,405 | 11,143,140  | 0.109 | 193.405 | 184.52   | 59.6  | 9.5  | 0.16 |
| SA0082 | 60390 | TSS | 2001 | 130.96 | 499,287 | 65,387,140  | 0.267 | 499.287 | 1,082.75 | 70.0  | 21.7 | 0.31 |
| SA0082 | 60390 | TSS | 2002 | 140.92 | 371,165 | 52,305,310  | 0.267 | 371.165 | 866.13   | 105.6 | 23.3 | 0.22 |
| SA0082 | 60390 | TSS | 2003 | 69.40  | 617,287 | 42,836,659  | 0.242 | 617.287 | 709.33   | 49.0  | 11.5 | 0.23 |
| SA0082 | 60390 | TSS | 2004 | 80.01  | 639,365 | 51,156,209  | 0.242 | 639.365 | 847.10   | 88.4  | 13.2 | 0.15 |
|        |       |     |      |        |         |             |       |         |          |       |      |      |

| Scott Co | ounty D      | itch 10   |      |               |                          |                 |       |                          |                            |                |                |      |
|----------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site     | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| SD0003   | 4270         | NO3       | 2003 | 3.07          | 12,261                   | 37,653          | 0.076 | 12.261                   | 8.82                       | 49.0           | 7.2            | 0.15 |
| SD0003   | 4270         | NO3       | 2004 | 6.07          | 15,895                   | 96,469          | 0.076 | 15.895                   | 22.59                      | 88.4           | 14.2           | 0.16 |
| SD0003   | 4270         | TDP       | 2003 | 3.07          | 248                      | 763             | 0.223 | 0.248                    | 0.18                       | 49.0           | 7.2            | 0.15 |
| SD0003   | 4270         | TDP       | 2004 | 6.07          | 243                      | 1,472           | 0.223 | 0.243                    | 0.34                       | 88.4           | 14.2           | 0.16 |
| SD0003   | 4270         | TKN       | 2003 | 3.07          | 1,984                    | 6,094           | 0.062 | 1.984                    | 1.43                       | 49.0           | 7.2            | 0.15 |
| SD0003   | 4270         | TKN       | 2004 | 6.07          | 2,249                    | 13,647          | 0.062 | 2.249                    | 3.20                       | 88.4           | 14.2           | 0.16 |
| SD0003   | 4270         | TP        | 2003 | 3.07          | 302                      | 927             | 0.159 | 0.302                    | 0.22                       | 49.0           | 7.2            | 0.15 |
| SD0003   | 4270         | TP        | 2004 | 6.07          | 367                      | 2,227           | 0.159 | 0.367                    | 0.52                       | 88.4           | 14.2           | 0.16 |
| SD0003   | 4270         | TSS       | 2003 | 3.07          | 50,966                   | 156,517         | 0.270 | 50.966                   | 36.66                      | 49.0           | 7.2            | 0.15 |
| SD0003   | 4270         | TSS       | 2004 | 6.07          | 90,200                   | 547,422         | 0.270 | 90.200                   | 128.20                     | 88.4           | 14.2           | 0.16 |

| Silver C | reek         |           |      |               |                          |                 |       |                          |                            |                |                |      |
|----------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site     | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| SI0001   | 1930         | NO3       | 2001 | 0.78          | 181                      | 140             | 0.320 | 0.181                    | 0.07                       | 88.1           | 4.0            | 0.05 |
| SI0001   | 1930         | NO3       | 2002 | 3.03          | 304                      | 920             | 0.132 | 0.304                    | 0.48                       | 104.6          | 15.7           | 0.15 |
| SI0001   | 1930         | NO3       | 2003 | 1.54          | 577                      | 887             | 0.060 | 0.577                    | 0.46                       | 73.4           | 8.0            | 0.11 |
| SI0001   | 1930         | NO3       | 2004 | 1.10          | 708                      | 778             | 0.088 | 0.708                    | 0.40                       | 76.3           | 5.7            | 0.07 |
| SI0001   | 1930         | TDP       | 2000 | 0.20          | 25                       | 5               | 0.163 | 0.025                    | 0.00                       | 79.1           | 1.0            | 0.01 |
| SI0001   | 1930         | TDP       | 2001 | 0.78          | 18                       | 14              | 0.123 | 0.018                    | 0.01                       | 88.1           | 4.0            | 0.05 |
| SI0001   | 1930         | TDP       | 2002 | 3.03          | 31                       | 94              | 0.092 | 0.031                    | 0.05                       | 104.6          | 15.7           | 0.15 |
| SI0001   | 1930         | TDP       | 2003 | 1.53          | 23                       | 36              | 0.106 | 0.023                    | 0.02                       | 73.4           | 7.9            | 0.11 |
| SI0001   | 1930         | TDP       | 2004 | 1.10          | 23                       | 25              | 0.106 | 0.023                    | 0.01                       | 76.3           | 5.7            | 0.07 |
| SI0001   | 1930         | TKN       | 2003 | 1.53          | 563                      | 862             | 0.094 | 0.563                    | 0.45                       | 73.4           | 7.9            | 0.11 |
| SI0001   | 1930         | TKN       | 2004 | 1.10          | 441                      | 484             | 0.094 | 0.441                    | 0.25                       | 76.3           | 5.7            | 0.07 |
| SI0001   | 1930         | TP        | 2000 | 0.20          | 63                       | 13              | 0.196 | 0.063                    | 0.01                       | 79.1           | 1.0            | 0.01 |
| SI0001   | 1930         | TP        | 2001 | 0.78          | 64                       | 50              | 0.127 | 0.064                    | 0.03                       | 88.1           | 4.0            | 0.05 |
| SI0001   | 1930         | TP        | 2002 | 3.03          | 95                       | 287             | 0.090 | 0.095                    | 0.15                       | 104.6          | 15.7           | 0.15 |
| SI0001   | 1930         | TP        | 2003 | 1.53          | 86                       | 131             | 0.104 | 0.086                    | 0.07                       | 73.4           | 7.9            | 0.11 |
| SI0001   | 1930         | TP        | 2004 | 1.10          | 64                       | 71              | 0.104 | 0.064                    | 0.04                       | 76.3           | 5.7            | 0.07 |
| SI0001   | 1930         | TSS       | 2000 | 0.20          | 29,762                   | 5,906           | 0.427 | 29.762                   | 3.06                       | 79.1           | 1.0            | 0.01 |
| SI0001   | 1930         | TSS       | 2001 | 0.78          | 13,861                   | 10,753          | 0.143 | 13.861                   | 5.57                       | 88.1           | 4.0            | 0.05 |
| SI0001   | 1930         | TSS       | 2002 | 3.03          | 41,814                   | 126,539         | 0.225 | 41.814                   | 65.56                      | 104.6          | 15.7           | 0.15 |
| SI0001   | 1930         | TSS       | 2003 | 1.53          | 38,008                   | 58,228          | 0.193 | 38.008                   | 30.17                      | 73.4           | 7.9            | 0.11 |
| SI0001   | 1930         | TSS       | 2004 | 1.10          | 23,039                   | 25,320          | 0.193 | 23.039                   | 13.12                      | 76.3           | 5.7            | 0.07 |

| South Fork | Crow F       | River     |      |               |                          |                    |       |                          |                            |                |                |      |
|------------|--------------|-----------|------|---------------|--------------------------|--------------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site       | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass<br>(kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| CWS0203    | 294000       | NO3       | 2001 | 567.09        | 4,929                    | 2,795,015          | 0.080 | 4.929                    | 9.51                       | 80.6           | 19.3           | 0.24 |
| CWS0203    | 294000       | NO3       | 2002 | 544.59        | 4,594                    | 2,501,743          | 0.039 | 4.594                    | 8.51                       | 103.9          | 18.5           | 0.18 |
| CWS0203    | 294000       | NO3       | 2003 | 357.12        | 5,402                    | 1,929,316          | 0.090 | 5.402                    | 6.56                       | 63.1           | 12.1           | 0.19 |
| CWS0203    | 294000       | NO3       | 2004 | 395.13        | 5,479                    | 2,165,025          | 0.090 | 5.479                    | 7.36                       | 98.5           | 13.4           | 0.14 |
| CWS0203    | 294000       | TDP       | 2002 | 544.59        | 272                      | 148,080            | 0.054 | 0.272                    | 0.50                       | 103.9          | 18.5           | 0.18 |
| CWS0203    | 294000       | TDP       | 2003 | 357.12        | 284                      | 101,376            | 0.077 | 0.284                    | 0.34                       | 63.1           | 12.1           | 0.19 |
| CWS0203    | 294000       | TDP       | 2004 | 395.13        | 291                      | 115,039            | 0.077 | 0.291                    | 0.39                       | 98.5           | 13.4           | 0.14 |
| CWS0203    | 294000       | TKN       | 2002 | 544.59        | 1,775                    | 966,649            | 0.030 | 1.775                    | 3.29                       | 103.9          | 18.5           | 0.18 |
| CWS0203    | 294000       | TKN       | 2003 | 357.12        | 1,851                    | 661,151            | 0.030 | 1.851                    | 2.25                       | 63.1           | 12.1           | 0.19 |
| CWS0203    | 294000       | TKN       | 2004 | 395.13        | 1,767                    | 698,093            | 0.030 | 1.767                    | 2.37                       | 98.5           | 13.4           | 0.14 |
| CWS0203    | 294000       | TP        | 2001 | 567.09        | 362                      | 205,408            | 0.081 | 0.362                    | 0.70                       | 80.6           | 19.3           | 0.24 |
| CWS0203    | 294000       | TP        | 2002 | 544.59        | 388                      | 211,422            | 0.036 | 0.388                    | 0.72                       | 103.9          | 18.5           | 0.18 |
| CWS0203    | 294000       | TP        | 2003 | 357.12        | 407                      | 145,387            | 0.054 | 0.407                    | 0.49                       | 63.1           | 12.1           | 0.19 |
| CWS0203    | 294000       | TP        | 2004 | 395.13        | 410                      | 162,143            | 0.054 | 0.410                    | 0.55                       | 98.5           | 13.4           | 0.14 |
| CWS0203    | 294000       | TSS       | 2001 | 567.09        | 22,299                   | 12,645,500         | 0.093 | 22.299                   | 43.01                      | 80.6           | 19.3           | 0.24 |
| CWS0203    | 294000       | TSS       | 2002 | 544.59        | 56,155                   | 30,581,606         | 0.099 | 56.155                   | 104.02                     | 103.9          | 18.5           | 0.18 |
| CWS0203    | 294000       | TSS       | 2003 | 357.12        | 57,313                   | 20,467,504         | 0.099 | 57.313                   | 69.62                      | 63.1           | 12.1           | 0.19 |
| CWS0203    | 294000       | TSS       | 2004 | 395.13        | 54,274                   | 21,445,618         | 0.099 | 54.274                   | 72.94                      | 98.5           | 13.4           | 0.14 |

| Valley C | reek         |           |      |               |                          |                 |       |                          |                            |                |                |      |
|----------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site     | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| VA0010   | 3410         | NO3       | 1999 | 14.09         | 3,990                    | 56,235          | 0.014 | 3.990                    | 16.49                      | 86.5           | 41.3           | 0.48 |
| VA0010   | 3410         | NO3       | 2000 | 15.41         | 3,987                    | 61,456          | 0.014 | 3.987                    | 18.02                      | 79.1           | 45.2           | 0.57 |
| VA0010   | 3410         | NO3       | 2001 | 17.42         | 3,992                    | 69,556          | 0.014 | 3.992                    | 20.40                      | 88.1           | 51.1           | 0.58 |
| VA0010   | 3410         | NO3       | 2002 | 18.82         | 3,987                    | 75,044          | 0.014 | 3.987                    | 22.01                      | 104.6          | 55.2           | 0.53 |
| VA0010   | 3410         | NO3       | 2003 | 18.56         | 3,982                    | 73,904          | 0.014 | 3.982                    | 21.67                      | 73.4           | 54.4           | 0.74 |
| VA0010   | 3410         | NO3       | 2004 | 15.09         | 4,480                    | 67,608          | 0.019 | 4.480                    | 19.83                      | 76.3           | 44.3           | 0.58 |
| VA0010   | 3410         | TDP       | 1999 | 14.09         | 26                       | 362             | 0.078 | 0.026                    | 0.11                       | 86.5           | 41.3           | 0.48 |
| VA0010   | 3410         | TDP       | 2000 | 15.41         | 25                       | 382             | 0.078 | 0.025                    | 0.11                       | 79.1           | 45.2           | 0.57 |
| VA0010   | 3410         | TDP       | 2001 | 17.42         | 23                       | 407             | 0.078 | 0.023                    | 0.12                       | 88.1           | 51.1           | 0.58 |
| VA0010   | 3410         | TDP       | 2002 | 18.82         | 24                       | 454             | 0.078 | 0.024                    | 0.13                       | 104.6          | 55.2           | 0.53 |
| VA0010   | 3410         | TDP       | 2003 | 18.56         | 25                       | 460             | 0.078 | 0.025                    | 0.13                       | 73.4           | 54.4           | 0.74 |
| VA0010   | 3410         | TDP       | 2004 | 15.09         | 28                       | 428             | 0.650 | 0.028                    | 0.13                       | 76.3           | 44.3           | 0.58 |
| VA0010   | 3410         | TKN       | 2003 | 18.61         | 415                      | 7,716           | 0.092 | 0.415                    | 2.26                       | 73.4           | 54.6           | 0.74 |
| VA0010   | 3410         | TKN       | 2004 | 15.09         | 265                      | 3,997           | 0.092 | 0.265                    | 1.17                       | 76.3           | 44.3           | 0.58 |
| VA0010   | 3410         | TP        | 1999 | 14.09         | 90                       | 1,265           | 0.142 | 0.090                    | 0.37                       | 86.5           | 41.3           | 0.48 |
| VA0010   | 3410         | TP        | 2000 | 15.41         | 71                       | 1,102           | 0.142 | 0.071                    | 0.32                       | 79.1           | 45.2           | 0.57 |
| VA0010   | 3410         | TP        | 2001 | 17.42         | 63                       | 1,093           | 0.142 | 0.063                    | 0.32                       | 88.1           | 51.1           | 0.58 |
| VA0010   | 3410         | TP        | 2002 | 18.82         | 65                       | 1,230           | 0.142 | 0.065                    | 0.36                       | 104.6          | 55.2           | 0.53 |
| VA0010   | 3410         | TP        | 2003 | 18.56         | 66                       | 1,222           | 0.142 | 0.066                    | 0.36                       | 73.4           | 54.4           | 0.74 |
| VA0010   | 3410         | TP        | 2004 | 15.09         | 53                       | 799             | 0.417 | 0.053                    | 0.23                       | 76.3           | 44.3           | 0.58 |
| VA0010   | 3410         | TSS       | 1999 | 14.09         | 12,092                   | 170,406         | 0.115 | 12.092                   | 49.97                      | 86.5           | 41.3           | 0.48 |
| VA0010   | 3410         | TSS       | 2000 | 15.41         | 14,360                   | 221,356         | 0.115 | 14.360                   | 64.91                      | 79.1           | 45.2           | 0.57 |
| VA0010   | 3410         | TSS       | 2001 | 17.42         | 11,875                   | 206,886         | 0.115 | 11.875                   | 60.67                      | 88.1           | 51.1           | 0.58 |
| VA0010   | 3410         | TSS       | 2002 | 18.82         | 14,573                   | 274,307         | 0.115 | 14.573                   | 80.44                      | 104.6          | 55.2           | 0.53 |
| VA0010   | 3410         | TSS       | 2003 | 18.56         | 16,882                   | 313,297         | 0.115 | 16.882                   | 91.88                      | 73.4           | 54.4           | 0.74 |
| VA0010   | 3410         | TSS       | 2004 | 15.09         | 11,365                   | 171,516         | 0.320 | 11.365                   | 50.30                      | 76.3           | 44.3           | 0.58 |

| Vermill | ion Rive     | er        |      |               |                          |                                        |       |                          |                            |                |                |      |
|---------|--------------|-----------|------|---------------|--------------------------|----------------------------------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site    | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg)                        | CV    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| VR0020  | 69940        | NO3       | 1998 | 185.27        | 3,807                    | 705,283                                | 0.113 | 3.807                    | 10.08                      | 95.6           | 26.5           | 0.28 |
| VR0020  | 69940        | NO3       | 1999 | 129.72        | 3,856                    | 500,219                                | 0.113 | 3.856                    | 7.15                       | 75.8           | 18.5           | 0.24 |
| VR0020  | 69940        | NO3       | 2000 | 77.24         | 5,377                    | 415,370                                | 0.047 | 5.377                    | 5.94                       | 77.1           | 11.0           | 0.14 |
| VR0020  | 69940        | NO3       | 2001 | 120.95        | 5,265                    | 636,726                                | 0.047 | 5.265                    | 9.10                       | 79.3           | 17.3           | 0.22 |
| VR0020  | 69940        | NO3       | 2002 | 253.06        | 4,560                    | 1,154,018                              | 0.036 | 4.560                    | 16.50                      | 106.9          | 36.2           | 0.34 |
| VR0020  | 69940        | NO3       | 2003 | 170.42        | 5,608                    | 955,711                                | 0.036 | 5.608                    | 13.66                      | 66.6           | 24.4           | 0.37 |
| VR0020  | 69940        | NO3       | 2004 | 154.57        | 5,767                    | 891,416                                | 0.036 | 5.767                    | 12.75                      | 83.7           | 22.1           | 0.26 |
| VR0020  | 69940        | TDP       | 1995 | 100.13        | 382                      | 38,277                                 | 0.190 | 0.382                    | 0.55                       | 75.7           | 14.3           | 0.19 |
| VR0020  | 69940        | TDP       | 1996 | 81.08         | 399                      | 32,343                                 | 0.190 | 0.399                    | 0.46                       | 68.8           | 11.6           | 0.17 |
| VR0020  | 69940        | TDP       | 1997 | 154.23        | 266                      | 41,091                                 | 0.123 | 0.266                    | 0.59                       | 93.1           | 22.1           | 0.24 |
| VR0020  | 69940        | TDP       | 1998 | 185.27        | 245                      | 45,315                                 | 0.123 | 0.245                    | 0.65                       | 95.6           | 26.5           | 0.28 |
| VR0020  | 69940        | TDP       | 1999 | 129.72        | 248                      | 32,161                                 | 0.123 | 0.248                    | 0.46                       | 75.8           | 18.5           | 0.24 |
| VR0020  | 69940        | TDP       | 2000 | 77.24         | 627                      | 48,433                                 | 0.063 | 0.627                    | 0.69                       | 77.1           | 11.0           | 0.14 |
| VR0020  | 69940        | TDP       | 2001 | 120.95        | 528                      | 63,830                                 | 0.063 | 0.528                    | 0.91                       | 79.3           | 17.3           | 0.22 |
| VR0020  | 69940        | TDP       | 2002 | 253.06        | 413                      | 104,442                                | 0.039 | 0.413                    | 1.49                       | 106.9          | 36.2           | 0.34 |
| VR0020  | 69940        | TDP       | 2003 | 170.42        | 505                      | 86,139                                 | 0.039 | 0.505                    | 1.23                       | 66.6           | 24.4           | 0.37 |
| VR0020  | 69940        | TDP       | 2004 | 154.57        | 518                      | 80,127                                 | 0.039 | 0.518                    | 1.15                       | 83.7           | 22.1           | 0.26 |
| VR0020  | 69940        | TKN       | 2002 | 253.06        | 1,216                    | 307,777                                | 0.101 | 1.216                    | 4.40                       | 106.9          | 36.2           | 0.34 |
| VR0020  | 69940        | TKN       | 2003 | 170.42        | 1,144                    | 194,880                                | 0.101 | 1.144                    | 2.79                       | 66.6           | 24.4           | 0.37 |
| VR0020  | 69940        | TKN       | 2004 | 154.57        | 1,147                    | 177,321                                | 0.101 | 1.147                    | 2.54                       | 83.7           | 22.1           | 0.26 |
| VR0020  | 69940        | TP        | 1995 | 100.13        | 634                      | 63,515                                 | 0.094 | 0.634                    | 0.91                       | 75.7           | 14.3           | 0.19 |
| VR0020  | 69940        | TP        | 1996 | 81.08         | 721                      | 58,467                                 | 0.094 | 0.721                    | 0.84                       | 68.8           | 11.6           | 0.17 |
| VR0020  | 69940        | TP        | 1997 | 154.23        | 358                      | 55,232                                 | 0.059 | 0.358                    | 0.79                       | 93.1           | 22.1           | 0.24 |
| VR0020  | 69940        | TP        | 1998 | 185.27        | 356                      | 66,006                                 | 0.059 | 0.356                    | 0.94                       | 95.6           | 26.5           | 0.28 |
| VR0020  | 69940        | TP        | 1999 | 129.72        | 362                      | 47,005                                 | 0.059 | 0.362                    | 0.67                       | 75.8           | 18.5           | 0.24 |
| VR0020  | 69940        | TP        | 2000 | 77.24         | 749                      | 57,822                                 | 0.094 | 0.749                    | 0.83                       | 77.1           | 11.0           | 0.14 |
| VR0020  | 69940        | TP        | 2001 | 120.95        | 686                      | 82,989                                 | 0.094 | 0.686                    | 1.19                       | 79.3           | 17.3           | 0.22 |
| VR0020  | 69940        | TP        | 2002 | 253.06        | 559                      | 141,358                                | 0.040 | 0.559                    | 2.02                       | 106.9          | 36.2           | 0.34 |
| VR0020  | 69940        | TP        | 2003 | 170.42        | 630                      | 107,340                                | 0.040 | 0.630                    | 1.53                       | 66.6           | 24.4           | 0.37 |
| VR0020  | 69940        | TP        | 2004 | 154.57        | 641                      | 99,071                                 | 0.040 | 0.641                    | 1.42                       | 83.7           | 22.1           | 0.26 |
| VR0020  | 69940        | TSS       | 1995 | 100.13        | 84,927                   | 8,503,455                              | 0.141 | 84.927                   | 121.58                     | 75.7           | 14.3           | 0.19 |
| VR0020  | 69940        | TSS       | 1996 | 81.08         | 84,927                   | 6,886,175                              | 0.141 | 84.927                   | 98.46                      | 68.8           | 11.6           | 0.17 |
| VR0020  | 69940        | TSS       | 1997 | 154.23        | 35,944                   | 5,543,653                              | 0.197 | 35.944                   | 79.26                      | 93.1           | 22.1           | 0.24 |
| VR0020  | 69940        | TSS       | 1998 | 185.27        | 41,031                   | 7,601,592                              | 0.197 | 41.031                   | 108.69                     | 95.6           | 26.5           | 0.28 |
| VR0020  | 69940        | TSS       | 1999 | 129.72        | 39,605                   | 5,137,521                              | 0.197 | 39.605                   | 73.46                      | 75.8           | 18.5           | 0.24 |
| VR0020  |              | TSS       | 2000 | 77.24         | 33,055                   | 2,553,286                              | 0.141 | 33.055                   | 36.51                      | 77.1           | 11.0           | 0.14 |
|         |              |           |      |               |                          | ······································ |       |                          |                            |                |                |      |

| VR0020 | 69940 | TSS | 2001 | 120.95 | 34,964 | 4,228,688 | 0.141 | 34.964 | 60.46  | 79.3  | 17.3 | 0.22 |
|--------|-------|-----|------|--------|--------|-----------|-------|--------|--------|-------|------|------|
| VR0020 | 69940 | TSS | 2002 | 253.06 | 28,542 | 7,222,873 | 0.141 | 28.542 | 103.27 | 106.9 | 36.2 | 0.34 |
| VR0020 | 69940 | TSS | 2003 | 170.22 | 35,416 | 6,028,647 | 0.141 | 35.416 | 86.20  | 66.6  | 24.3 | 0.37 |
| VR0020 | 69940 | TSS | 2004 | 154.57 | 37,395 | 5,780,183 | 0.172 | 37.395 | 82.64  | 83.7  | 22.1 | 0.26 |

| Willow | Creek        |           |      |               |                          |                 |       |                          |                            |                |                |      |
|--------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| Site   | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
| WI0010 | 2120         | NO3       | 2001 | 6.05          | 376                      | 2,273           | 0.087 | 0.376                    | 1.07                       | 85.4           | 28.6           | 0.33 |
| WI0010 | 2120         | NO3       | 2002 | 7.37          | 319                      | 2,347           | 0.067 | 0.319                    | 1.11                       | 105.9          | 34.7           | 0.33 |
| WI0010 | 2120         | NO3       | 2003 | 3.18          | 338                      | 1,073           | 0.067 | 0.338                    | 0.51                       | 64.5           | 15.0           | 0.23 |
| WI0010 | 2120         | NO3       | 2004 | 3.40          | 336                      | 1,142           | 0.067 | 0.336                    | 0.54                       | 83.6           | 16.0           | 0.19 |
| WI0010 | 2120         | TDP       | 2001 | 6.05          | 44                       | 267             | 0.079 | 0.044                    | 0.13                       | 85.4           | 28.6           | 0.33 |
| WI0010 | 2120         | TDP       | 2002 | 7.37          | 45                       | 335             | 0.079 | 0.045                    | 0.16                       | 105.9          | 34.7           | 0.33 |
| WI0010 | 2120         | TDP       | 2003 | 3.18          | 42                       | 134             | 0.079 | 0.042                    | 0.06                       | 64.5           | 15.0           | 0.23 |
| WI0010 | 2120         | TDP       | 2004 | 3.40          | 58                       | 197             | 0.177 | 0.058                    | 0.09                       | 83.6           | 16.0           | 0.19 |
| WI0010 | 2120         | TKN       | 2003 | 3.18          | 1,442                    | 4,579           | 0.267 | 1.442                    | 2.16                       | 64.5           | 15.0           | 0.23 |
| WI0010 | 2120         | TKN       | 2004 | 3.40          | 1,608                    | 5,464           | 0.267 | 1.608                    | 2.58                       | 83.6           | 16.0           | 0.19 |
| WI0010 | 2120         | TP        | 2001 | 6.05          | 140                      | 850             | 0.105 | 0.140                    | 0.40                       | 85.4           | 28.6           | 0.33 |
| WI0010 | 2120         | TP        | 2002 | 7.37          | 153                      | 1,125           | 0.105 | 0.153                    | 0.53                       | 105.9          | 34.7           | 0.33 |
| WI0010 | 2120         | TP        | 2003 | 3.18          | 137                      | 437             | 0.105 | 0.137                    | 0.21                       | 64.5           | 15.0           | 0.23 |
| WI0010 | 2120         | TP        | 2004 | 3.40          | 119                      | 404             | 0.125 | 0.119                    | 0.19                       | 83.6           | 16.0           | 0.19 |
| WI0010 | 2120         | TSS       | 2001 | 6.05          | 56,602                   | 342,611         | 0.172 | 56.602                   | 161.61                     | 85.4           | 28.6           | 0.33 |
| WI0010 | 2120         | TSS       | 2002 | 7.37          | 64,909                   | 478,099         | 0.172 | 64.909                   | 225.52                     | 105.9          | 34.7           | 0.33 |
| WI0010 | 2120         | TSS       | 2003 | 3.18          | 56,598                   | 155,229         | 0.172 | 56.598                   | 73.22                      | 64.5           | 15.0           | 0.23 |
| WI0010 | 2120         | TSS       | 2004 | 3.40          | 83,248                   | 282,961         | 0.215 | 83.248                   | 133.47                     | 83.6           | 16.0           | 0.19 |

| West | Raven | Cr | eek |
|------|-------|----|-----|
| 0.14 | - 0   |    | D-  |

| Site   | Area<br>(ha) | Parameter | Year | Flow<br>(hm3) | Model-<br>Conc<br>(ug/L) | Model-Mass (kg) | cv    | Model-<br>Conc<br>(mg/L) | Model-<br>Yield<br>(kg/ha) | Precip<br>(cm) | Runoff<br>(cm) | RC   |
|--------|--------------|-----------|------|---------------|--------------------------|-----------------|-------|--------------------------|----------------------------|----------------|----------------|------|
| WR0047 | 3850         | NO3       | 2004 | 4.22          | 11,393                   | 48,103          | 0.105 | 11.393                   | 12.49                      | 88.4           | 11.0           | 0.12 |
| WR0047 | 3850         | TDP       | 2003 | 2.85          | 320                      | 914             | 0.102 | 0.320                    | 0.24                       | 49.0           | 7.4            | 0.15 |
| WR0047 | 3850         | TDP       | 2004 | 4.22          | 317                      | 1,338           | 0.102 | 0.317                    | 0.35                       | 88.4           | 11.0           | 0.12 |
| WR0047 | 3850         | TKN       | 2004 | 4.22          | 2,426                    | 10,242          | 0.117 | 2.426                    | 2.66                       | 88.4           | 11.0           | 0.12 |
| WR0047 | 3850         | TP        | 2004 | 4.22          | 604                      | 2,549           | 0.151 | 0.604                    | 0.66                       | 88.4           | 11.0           | 0.12 |
| WR0047 | 3850         | TSS       | 2004 | 4.22          | 237,083                  | 1,000,966       | 0.377 | 237.083                  | 259.99                     | 88.4           | 11.0           | 0.12 |